Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 64
Filter
Add more filters










Publication year range
1.
Nucleic Acids Res ; 51(21): 11748-11769, 2023 Nov 27.
Article in English | MEDLINE | ID: mdl-37878419

ABSTRACT

Post-translational modifications of histones are important regulators of the DNA damage response (DDR). By using affinity purification mass spectrometry (AP-MS) we discovered that genetic suppressor element 1 (GSE1) forms a complex with the HDAC1/CoREST deacetylase/demethylase co-repressor complex. In-depth phosphorylome analysis revealed that loss of GSE1 results in impaired DDR, ATR signalling and γH2AX formation upon DNA damage induction. Altered profiles of ATR target serine-glutamine motifs (SQ) on DDR-related hallmark proteins point to a defect in DNA damage sensing. In addition, GSE1 knock-out cells show hampered DNA damage-induced phosphorylation on SQ motifs of regulators of histone post-translational modifications, suggesting altered histone modification. While loss of GSE1 does not affect the histone deacetylation activity of CoREST, GSE1 appears to be essential for binding of the deubiquitinase USP22 to CoREST and for the deubiquitination of H2B K120 in response to DNA damage. The combination of deacetylase, demethylase, and deubiquitinase activity makes the USP22-GSE1-CoREST subcomplex a multi-enzymatic eraser that seems to play an important role during DDR. Since GSE1 has been previously associated with cancer progression and survival our findings are potentially of high medical relevance.


Subject(s)
DNA Damage , Histones , Cell Nucleus/metabolism , Co-Repressor Proteins/metabolism , Deubiquitinating Enzymes/genetics , Histones/genetics , Histones/metabolism , Humans , Animals , Mice , Cell Line
2.
Methods Mol Biol ; 2589: 51-73, 2023.
Article in English | MEDLINE | ID: mdl-36255617

ABSTRACT

Class I histone deacetylases (HDACs) are important regulators of cellular functions in health and disease. HDAC1, HDAC2, HDAC3, and HDAC8 are promising targets for the treatment of cancer, neurological, and immunological disorders. These enzymes have both catalytic and non-catalytic functions in the regulation of gene expression. We here describe the generation of a genetic toolbox by the CRISPR/Cas9 methodology in nearly haploid human tumor cells. This novel model system allows to discriminate between catalytic and structural functions of class I HDAC enzymes and to mimic the treatment with specific HDAC inhibitors.


Subject(s)
Histone Deacetylase Inhibitors , Neoplasms , Humans , Histone Deacetylase Inhibitors/pharmacology , Histone Deacetylase 1/genetics , Histone Deacetylase 1/metabolism , Histone Deacetylases/genetics , Histone Deacetylases/metabolism , Repressor Proteins
3.
PLoS Genet ; 18(8): e1010376, 2022 08.
Article in English | MEDLINE | ID: mdl-35994477

ABSTRACT

The class I histone deacetylases are essential regulators of cell fate decisions in health and disease. While pan- and class-specific HDAC inhibitors are available, these drugs do not allow a comprehensive understanding of individual HDAC function, or the therapeutic potential of isoform-specific targeting. To systematically compare the impact of individual catalytic functions of HDAC1, HDAC2 and HDAC3, we generated human HAP1 cell lines expressing catalytically inactive HDAC enzymes. Using this genetic toolbox we compare the effect of individual HDAC inhibition with the effects of class I specific inhibitors on cell viability, protein acetylation and gene expression. Individual inactivation of HDAC1 or HDAC2 has only mild effects on cell viability, while HDAC3 inactivation or loss results in DNA damage and apoptosis. Inactivation of HDAC1/HDAC2 led to increased acetylation of components of the COREST co-repressor complex, reduced deacetylase activity associated with this complex and derepression of neuronal genes. HDAC3 controls the acetylation of nuclear hormone receptor associated proteins and the expression of nuclear hormone receptor regulated genes. Acetylation of specific histone acetyltransferases and HDACs is sensitive to inactivation of HDAC1/HDAC2. Over a wide range of assays, we determined that in particular HDAC1 or HDAC2 catalytic inactivation mimics class I specific HDAC inhibitors. Importantly, we further demonstrate that catalytic inactivation of HDAC1 or HDAC2 sensitizes cells to specific cancer drugs. In summary, our systematic study revealed isoform-specific roles of HDAC1/2/3 catalytic functions. We suggest that targeted genetic inactivation of particular isoforms effectively mimics pharmacological HDAC inhibition allowing the identification of relevant HDACs as targets for therapeutic intervention.


Subject(s)
Histone Deacetylase 1 , Histone Deacetylase Inhibitors , Acetylation , Histone Deacetylase 1/genetics , Histone Deacetylase 1/metabolism , Histone Deacetylase 2/genetics , Histone Deacetylase 2/metabolism , Histone Deacetylase Inhibitors/pharmacology , Histone Deacetylases/genetics , Histone Deacetylases/metabolism , Humans , Protein Isoforms/genetics , Protein Isoforms/metabolism
4.
EMBO J ; 40(22): e108234, 2021 11 15.
Article in English | MEDLINE | ID: mdl-34586646

ABSTRACT

DNA methylation is a fundamental epigenetic modification, important across biological processes. The maintenance methyltransferase DNMT1 is essential for lineage differentiation during development, but its functions in tissue homeostasis are incompletely understood. We show that epidermis-specific DNMT1 deletion severely disrupts epidermal structure and homeostasis, initiating a massive innate immune response and infiltration of immune cells. Mechanistically, DNA hypomethylation in keratinocytes triggered transposon derepression, mitotic defects, and formation of micronuclei. DNA release into the cytosol of DNMT1-deficient keratinocytes activated signaling through cGAS and STING, thus triggering inflammation. Our findings show that disruption of a key epigenetic mark directly impacts immune and tissue homeostasis, and potentially impacts our understanding of autoinflammatory diseases and cancer immunotherapy.


Subject(s)
DNA Methylation , Dermatitis/genetics , Epidermis/physiopathology , Nucleotidyltransferases/metabolism , Adaptor Proteins, Signal Transducing/metabolism , Animals , Chromosome Aberrations , Cytosol/physiology , DNA (Cytosine-5-)-Methyltransferase 1/genetics , Dermatitis/immunology , Dermatitis/pathology , Humans , Immunity, Innate/genetics , Interferon-Induced Helicase, IFIH1/metabolism , Keratinocytes/immunology , Keratinocytes/metabolism , Keratinocytes/pathology , Membrane Proteins/genetics , Membrane Proteins/metabolism , Mice, Transgenic , Nucleotidyltransferases/genetics
5.
J Autoimmun ; 119: 102610, 2021 05.
Article in English | MEDLINE | ID: mdl-33621930

ABSTRACT

CD4+ T cell trafficking is a fundamental property of adaptive immunity. In this study, we uncover a novel role for histone deacetylase 1 (HDAC1) in controlling effector CD4+ T cell migration, thereby providing mechanistic insight into why a T cell-specific deletion of HDAC1 protects against experimental autoimmune encephalomyelitis (EAE). HDAC1-deficient CD4+ T cells downregulated genes associated with leukocyte extravasation. In vitro, HDAC1-deficient CD4+ T cells displayed aberrant morphology and migration on surfaces coated with integrin LFA-1 ligand ICAM-1 and showed an impaired ability to arrest on and to migrate across a monolayer of primary mouse brain microvascular endothelial cells under physiological flow. Moreover, HDAC1 deficiency reduced homing of CD4+ T cells into the intestinal epithelium and lamina propria preventing weight-loss, crypt damage and intestinal inflammation in adoptive CD4+ T cell transfer colitis. This correlated with reduced expression levels of LFA-1 integrin chains CD11a and CD18 as well as of selectin ligands CD43, CD44 and CD162 on transferred circulating HDAC1-deficient CD4+ T cells. Our data reveal that HDAC1 controls T cell-mediated autoimmunity via the regulation of CD4+ T cell trafficking into the CNS and intestinal tissues.


Subject(s)
Autoimmunity , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/metabolism , Chemotaxis, Leukocyte/immunology , Histone Deacetylase 1/metabolism , Inflammation/etiology , Inflammation/metabolism , Animals , Biomarkers , Cell Adhesion , Chemotaxis, Leukocyte/genetics , Disease Models, Animal , Disease Susceptibility , Encephalomyelitis, Autoimmune, Experimental/diagnosis , Encephalomyelitis, Autoimmune, Experimental/etiology , Encephalomyelitis, Autoimmune, Experimental/metabolism , Endothelial Cells , Gene Expression Profiling , Gene Expression Regulation , Histone Deacetylase 1/genetics , Immunohistochemistry , Inflammation/diagnosis , Intestinal Mucosa/immunology , Intestinal Mucosa/metabolism , Intestinal Mucosa/pathology , Lymphocyte Activation/genetics , Lymphocyte Activation/immunology , Mice , Mice, Knockout
6.
Life Sci Alliance ; 4(2)2021 02.
Article in English | MEDLINE | ID: mdl-33310759

ABSTRACT

Malignant transformation depends on genetic and epigenetic events that result in a burst of deregulated gene expression and chromatin changes. To dissect the sequence of events in this process, we used a T-cell-specific lymphoma model based on the human oncogenic nucleophosmin-anaplastic lymphoma kinase (NPM-ALK) translocation. We find that transformation of T cells shifts thymic cell populations to an undifferentiated immunophenotype, which occurs only after a period of latency, accompanied by induction of the MYC-NOTCH1 axis and deregulation of key epigenetic enzymes. We discover aberrant DNA methylation patterns, overlapping with regulatory regions, plus a high degree of epigenetic heterogeneity between individual tumors. In addition, ALK-positive tumors show a loss of associated methylation patterns of neighboring CpG sites. Notably, deletion of the maintenance DNA methyltransferase DNMT1 completely abrogates lymphomagenesis in this model, despite oncogenic signaling through NPM-ALK, suggesting that faithful maintenance of tumor-specific methylation through DNMT1 is essential for sustained proliferation and tumorigenesis.


Subject(s)
Cell Transformation, Neoplastic/genetics , Cell Transformation, Neoplastic/metabolism , DNA (Cytosine-5-)-Methyltransferase 1/metabolism , Epigenesis, Genetic , Lymphoma/etiology , Lymphoma/metabolism , Protein-Tyrosine Kinases/genetics , Animals , Biomarkers, Tumor , Computational Biology/methods , DNA (Cytosine-5-)-Methyltransferase 1/genetics , DNA Methylation , Disease Models, Animal , Disease Susceptibility , Epigenomics , Gene Deletion , Gene Expression Regulation, Neoplastic , Gene Regulatory Networks , Humans , Immunohistochemistry , Immunophenotyping , Lymphoma/drug therapy , Lymphoma/pathology , Mice , Mice, Knockout , Mice, Transgenic , Protein-Tyrosine Kinases/metabolism , STAT3 Transcription Factor/metabolism , Signal Transduction , Xenograft Model Antitumor Assays
7.
Ann Clin Transl Neurol ; 7(11): 2161-2177, 2020 11.
Article in English | MEDLINE | ID: mdl-32997393

ABSTRACT

OBJECTIVE: To assess class I-histone deacetylase (HDAC) inhibition on formation of lipid-accumulating, disease-promoting phagocytes upon myelin load in vitro, relevant for neuroinflammatory disorders like multiple sclerosis (MS) and cerebral X-linked adrenoleukodystrophy (X-ALD). METHODS: Immunohistochemistry on postmortem brain tissue of acute MS (n = 6) and cerebral ALD (n = 4) cases to analyze activation and foam cell state of phagocytes. RNA-Seq of in vitro differentiated healthy macrophages (n = 8) after sustained myelin-loading to assess the metabolic shift associated with foam cell formation. RNA-Seq analysis of genes linked to lipid degradation and export in MS-275-treated human HAP1 cells and RT-qPCR analysis of HAP1 cells knocked out for individual members of class I HDACs or the corresponding enzymatically inactive knock-in mutants. Investigation of intracellular lipid/myelin content after MS-275 treatment of myelin-laden human foam cells. Analysis of disease characteristic very long-chain fatty acid (VLCFA) metabolism and inflammatory state in MS-275-treated X-ALD macrophages. RESULTS: Enlarged foam cells coincided with a pro-inflammatory, lesion-promoting phenotype in postmortem tissue of MS and cerebral ALD patients. Healthy in vitro myelin laden foam cells upregulated genes linked to LXRα/PPARγ pathways and mimicked a program associated with tissue repair. Treating these cells with MS-275, amplified this gene transcription program and significantly reduced lipid and cholesterol accumulation and, thus, foam cell formation. In macrophages derived from X-ALD patients, MS-275 improved the disease-associated alterations of VLCFA metabolism and reduced the pro-inflammatory status of these cells. INTERPRETATION: These findings identify class I-HDAC inhibition as a potential novel strategy to prevent disease promoting foam cell formation in CNS inflammation.


Subject(s)
Adrenoleukodystrophy , Benzamides/pharmacology , Foam Cells/drug effects , Histone Deacetylase Inhibitors/pharmacology , Inflammation , Multiple Sclerosis , Pyridines/pharmacology , Acute Disease , Adrenoleukodystrophy/drug therapy , Adrenoleukodystrophy/immunology , Adrenoleukodystrophy/metabolism , Adult , Autopsy , Gene Expression Profiling , Humans , Immunohistochemistry , Inflammation/drug therapy , Inflammation/immunology , Inflammation/metabolism , Middle Aged , Multiple Sclerosis/drug therapy , Multiple Sclerosis/immunology , Multiple Sclerosis/metabolism , Sequence Analysis, RNA , Young Adult
8.
Ann Clin Transl Neurol ; 7(5): 639-652, 2020 05.
Article in English | MEDLINE | ID: mdl-32359032

ABSTRACT

OBJECTIVE: To identify a pharmacological compound targeting macrophages, the most affected immune cells in inflammatory X-linked adrenoleukodystrophy (cerebral X-ALD) caused by ABCD1 mutations and involved in the success of hematopoietic stem cell transplantation and gene therapy. METHODS: A comparative database analysis elucidated the epigenetic repressing mechanism of the related ABCD2 gene in macrophages and identified the histone deacetylase (HDAC) inhibitor Vorinostat as a compound to induce ABCD2 in these cells to compensate for ABCD1 deficiency. In these cells, we investigated ABCD2 and pro-inflammatory gene expression, restoration of defective peroxisomal ß-oxidation activity, accumulation of very long-chain fatty acids (VLCFAs) and their differentiation status. We investigated ABCD2 and pro-inflammatory gene expression, restoration of defective peroxisomal ß-oxidation activity, accumulation of very long-chain fatty acids (VLCFA) and differentiation status. Three advanced cerebral X-ALD patients received Vorinostat and CSF and MRI diagnostics was carried out in one patient after 80 days of treatment. RESULTS: Vorinostat improved the metabolic defects in X-ALD macrophages by stimulating ABCD2 expression, peroxisomal ß-oxidation, and ameliorating VLCFA accumulation. Vorinostat interfered with pro-inflammatory skewing of X-ALD macrophages by correcting IL12B expression and further reducing monocyte differentiation. Vorinostat normalized the albumin and immunoglobulin CSF-serum ratios, but not gadolinium enhancement upon 80 days of treatment. INTERPRETATION: The beneficial effects of HDAC inhibitors on macrophages in X-ALD and the improvement of the blood-CSF/blood-brain barrier are encouraging for future investigations. In contrast with Vorinostat, less toxic macrophage-specific HDAC inhibitors might improve also the clinical state of X-ALD patients with advanced inflammatory demyelination.


Subject(s)
ATP Binding Cassette Transporter, Subfamily D, Member 1/deficiency , ATP Binding Cassette Transporter, Subfamily D/drug effects , Adrenoleukodystrophy/drug therapy , Histone Deacetylase Inhibitors/pharmacology , Inflammation/drug therapy , Macrophages/drug effects , Vorinostat/pharmacology , Acute Disease , Adrenoleukodystrophy/cerebrospinal fluid , Adrenoleukodystrophy/diagnostic imaging , Coenzyme A Ligases/drug effects , Humans , Magnetic Resonance Imaging , Outcome Assessment, Health Care , Peroxisomes
9.
JCI Insight ; 5(4)2020 02 27.
Article in English | MEDLINE | ID: mdl-32102981

ABSTRACT

Some effector CD4+ T cell subsets display cytotoxic activity, thus breaking the functional dichotomy of CD4+ helper and CD8+ cytotoxic T lymphocytes. However, molecular mechanisms regulating CD4+ cytotoxic T lymphocyte (CD4+ CTL) differentiation are poorly understood. Here we show that levels of histone deacetylases 1 and 2 (HDAC1-HDAC2) are key determinants of CD4+ CTL differentiation. Deletions of both Hdac1 and 1 Hdac2 alleles (HDAC1cKO-HDAC2HET) in CD4+ T cells induced a T helper cytotoxic program that was controlled by IFN-γ-JAK1/2-STAT1 signaling. In vitro, activated HDAC1cKO-HDAC2HET CD4+ T cells acquired cytolytic activity and displayed enrichment of gene signatures characteristic of effector CD8+ T cells and human CD4+ CTLs. In vivo, murine cytomegalovirus-infected HDAC1cKO-HDAC2HET mice displayed a stronger induction of CD4+ CTL features compared with infected WT mice. Finally, murine and human CD4+ T cells treated with short-chain fatty acids, which are commensal-produced metabolites acting as HDAC inhibitors, upregulated CTL genes. Our data demonstrate that HDAC1-HDAC2 restrain CD4+ CTL differentiation. Thus, HDAC1-HDAC2 might be targets for the therapeutic induction of CD4+ CTLs.


Subject(s)
CD4-Positive T-Lymphocytes/cytology , Cell Differentiation/physiology , Histone Deacetylase 1/physiology , Histone Deacetylase 2/physiology , T-Lymphocytes, Cytotoxic/physiology , Animals , CD4-Positive T-Lymphocytes/drug effects , Fatty Acids/pharmacology , Histone Deacetylase 1/genetics , Histone Deacetylase 2/genetics , Humans , Mice , Mice, Knockout , Signal Transduction/physiology , T-Lymphocytes, Cytotoxic/drug effects , Up-Regulation/drug effects , Up-Regulation/physiology
10.
J Autoimmun ; 108: 102379, 2020 03.
Article in English | MEDLINE | ID: mdl-31883829

ABSTRACT

Rheumatoid Arthritis (RA) represents a chronic T cell-mediated inflammatory autoimmune disease. Studies have shown that epigenetic mechanisms contribute to the pathogenesis of RA. Histone deacetylases (HDACs) represent one important group of epigenetic regulators. However, the role of individual HDAC members for the pathogenesis of arthritis is still unknown. In this study we demonstrate that mice with a T cell-specific deletion of HDAC1 (HDAC1-cKO) are resistant to the development of Collagen-induced arthritis (CIA), whereas the antibody response to collagen type II was undisturbed, indicating an unaltered T cell-mediated B cell activation. The inflammatory cytokines IL-17 and IL-6 were significantly decreased in sera of HDAC1-cKO mice. IL-6 treated HDAC1-deficient CD4+ T cells showed an impaired upregulation of CCR6. Selective inhibition of class I HDACs with the HDAC inhibitor MS-275 under Th17-skewing conditions inhibited the upregulation of chemokine receptor 6 (CCR6) in mouse and human CD4+ T cells. Accordingly, analysis of human RNA-sequencing (RNA-seq) data and histological analysis of synovial tissue samples from human RA patients revealed the existence of CD4+CCR6+ cells with enhanced HDAC1 expression. Our data indicate a key role for HDAC1 for the pathogenesis of CIA and suggest that HDAC1 and other class I HDACs might be promising targets of selective HDAC inhibitors (HDACi) for the treatment of RA.


Subject(s)
Arthritis, Rheumatoid/etiology , Arthritis, Rheumatoid/metabolism , Disease Susceptibility , Histone Deacetylase 1/metabolism , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , Animals , Arthritis, Rheumatoid/pathology , Biomarkers , Collagen/adverse effects , Cytokines/metabolism , Disease Models, Animal , Gene Expression Regulation , Histone Deacetylase 1/genetics , Humans , Inflammation Mediators/metabolism , Mice , Mice, Knockout , T-Lymphocyte Subsets/immunology , T-Lymphocyte Subsets/metabolism
11.
Nat Rev Immunol ; 19(4): 266, 2019 Apr.
Article in English | MEDLINE | ID: mdl-30862885

ABSTRACT

In Table 1 in the originally published version of this article, the phenotype of Hdac1-cKO CD8+ T cells (3rd row) was incorrectly described. This has been corrected in the HTML and PDF versions of the manuscript.

12.
Neuron ; 101(6): 1117-1133.e5, 2019 03 20.
Article in English | MEDLINE | ID: mdl-30709655

ABSTRACT

Neural progenitors with distinct potential to generate progeny are associated with a spatially distinct microenvironment. Neocortical intermediate progenitors (IPs) in the subventricular zone (SVZ) of the developing brain generate neurons for all cortical layers and are essential for cortical expansion. Here, we show that spatial control of IP positioning is essential for neocortical development. We demonstrate that HDAC1 and HDAC2 regulate the spatial positioning of IPs to form the SVZ. Developmental stage-specific depletion of both HDAC1 and HDAC2 in radial glial progenitors results in mispositioning of IPs at the ventricular surface, where they divide and differentiate into neurons, thereby leading to the cortical malformation. We further identified the proneural gene Neurogenin2 as a key target of HDAC1 and HDAC2 for regulating IP positioning. Our results demonstrate the importance of the spatial positioning of neural progenitors in cortical development and reveal a mechanism underlying the establishment of the SVZ microenvironment.


Subject(s)
Ependymoglial Cells/metabolism , Histone Deacetylase 1/genetics , Histone Deacetylase 2/genetics , Lateral Ventricles/embryology , Malformations of Cortical Development/genetics , Neocortex/embryology , Neural Stem Cells/metabolism , Animals , Basic Helix-Loop-Helix Transcription Factors/metabolism , Cell Movement/genetics , Histone Deacetylase 1/metabolism , Histone Deacetylase 2/metabolism , Malformations of Cortical Development/embryology , Mice , Nerve Tissue Proteins/metabolism , Neurogenesis
13.
Nat Rev Immunol ; 18(10): 617-634, 2018 10.
Article in English | MEDLINE | ID: mdl-30022149

ABSTRACT

The differentiation of T helper cell subsets and their acquisition of effector functions are accompanied by changes in gene expression programmes, which in part are regulated and maintained by epigenetic processes. Histone deacetylases (HDACs) and histone acetyltransferases (HATs) are key epigenetic regulators that function by mediating dynamic changes in the acetylation of histones at lysine residues. In addition, many non-histone proteins are also acetylated, and reversible acetylation affects their functional properties, demonstrating that HDACs mediate effects beyond the epigenetic regulation of gene expression. In this Review, we discuss studies revealing that HDACs are key regulators of CD4+ T cell-mediated immunity in mice and humans and that HDACs are promising targets in T cell-mediated immune diseases. Finally, we discuss unanswered questions and future research directions to promote the concept that isoform-selective HDAC inhibitors might broaden the clinical application of HDAC inhibitors beyond their current use in certain types of cancer.


Subject(s)
Histone Acetyltransferases/metabolism , Histone Code/genetics , Histone Deacetylases/metabolism , T-Lymphocytes, Helper-Inducer/immunology , T-Lymphocytes, Helper-Inducer/metabolism , Acetylation , Animals , Chromatin/metabolism , Gene Expression Regulation/genetics , Histones/metabolism , Humans , Lymphocyte Activation , Mice , T-Lymphocytes, Helper-Inducer/cytology
14.
Histochem Cell Biol ; 150(3): 255-269, 2018 Sep.
Article in English | MEDLINE | ID: mdl-29951776

ABSTRACT

Aging is associated with profound changes in the epigenome, resulting in alterations of gene expression, epigenetic landscape, and genome architecture. Class I Histone deacetylases (HDACs), consisting of HDAC1, HDAC2, HDAC3, and HDAC8, play a major role in epigenetic regulation of chromatin structure and transcriptional control, and have been implicated as key players in the pathogenesis of age-dependent diseases and disorders affecting health and longevity. Here, we report the identification of class I Hdac orthologs and their detailed spatio-temporal expression profile in the short-lived fish Nothobranchius furzeri from the onset of embryogenesis until old age covering the entire lifespan of the organism. Database search of the recently annotated N. furzeri genomes retrieved four distinct genes: two copies of hdac1 and one copy of each hdac3 and hdac8. However, no hdac2 ortholog could be identified. Phylogenetic analysis grouped the individual killifish class I Hdacs within the well-defined terminal clades. We find that upon aging, Hdac1 is significantly down-regulated in muscle, liver, and brain, and this age-dependent down-regulation in brain clearly correlates with increased mRNA levels of the cyclin-dependent kinase inhibitor cdkn1a (p21). Furthermore, this apparent reduction of class I HDACs in transcript and protein levels is mirrored in the mouse brain, highlighting an evolutionarily conserved role of class I HDACs during normal development and in the aging process.


Subject(s)
Aging , Fishes , Histone Deacetylase 1/genetics , Animals , Gene Expression Profiling , Histone Deacetylase 1/metabolism , Immunohistochemistry , Mice , Mice, Inbred C57BL , Survival Analysis
15.
J Cell Physiol ; 233(1): 530-548, 2018 Jan.
Article in English | MEDLINE | ID: mdl-28300292

ABSTRACT

Although histone acetylation is one of the most widely studied epigenetic modifications, there is still a lack of information regarding how the acetylome is regulated during brain development and pathophysiological processes. We demonstrate that the embryonic brain (E15) is characterized by an increase in H3K9 acetylation as well as decreases in the levels of HDAC1 and HDAC3. Moreover, experimental induction of H3K9 hyperacetylation led to the overexpression of NCAM in the embryonic cortex and depletion of Sox2 in the subventricular ependyma, which mimicked the differentiation processes. Inducing differentiation in HDAC1-deficient mouse ESCs resulted in early H3K9 deacetylation, Sox2 downregulation, and enhanced astrogliogenesis, whereas neuro-differentiation was almost suppressed. Neuro-differentiation of (wt) ESCs was characterized by H3K9 hyperacetylation that was associated with HDAC1 and HDAC3 depletion. Conversely, the hippocampi of schizophrenia-like animals showed H3K9 deacetylation that was regulated by an increase in both HDAC1 and HDAC3. The hippocampi of schizophrenia-like brains that were treated with the cannabinoid receptor-1 inverse antagonist AM251 expressed H3K9ac at the level observed in normal brains. Together, the results indicate that co-regulation of H3K9ac by HDAC1 and HDAC3 is important to both embryonic brain development and neuro-differentiation as well as the pathophysiology of a schizophrenia-like phenotype.


Subject(s)
Brain/enzymology , Histone Deacetylase 1/metabolism , Histone Deacetylases/metabolism , Histones/metabolism , Neurogenesis , Neurons/enzymology , Schizophrenia/enzymology , Acetylation , Animals , Antipsychotic Agents/pharmacology , Brain/drug effects , Brain/embryology , Brain/pathology , Cannabinoid Receptor Antagonists/pharmacology , Disease Models, Animal , Epigenesis, Genetic , Gene Expression Regulation, Developmental , Gestational Age , Histone Deacetylase 1/antagonists & inhibitors , Histone Deacetylase 1/genetics , Histone Deacetylase Inhibitors/pharmacology , Histone Deacetylases/genetics , Methylazoxymethanol Acetate , Mice, Inbred C57BL , Neural Cell Adhesion Molecules/genetics , Neural Cell Adhesion Molecules/metabolism , Neurogenesis/drug effects , Neurons/drug effects , Neurons/pathology , Protein Processing, Post-Translational , Rats, Sprague-Dawley , Receptor, Cannabinoid, CB1/antagonists & inhibitors , Receptor, Cannabinoid, CB1/metabolism , SOXB1 Transcription Factors/genetics , SOXB1 Transcription Factors/metabolism , Schizophrenia/chemically induced , Schizophrenia/drug therapy , Schizophrenia/genetics , Signal Transduction , Time Factors
16.
J Autoimmun ; 86: 51-61, 2018 01.
Article in English | MEDLINE | ID: mdl-28964722

ABSTRACT

Multiple sclerosis (MS) is a human neurodegenerative disease characterized by the invasion of autoreactive T cells from the periphery into the CNS. Application of pan-histone deacetylase inhibitors (HDACi) ameliorates experimental autoimmune encephalomyelitis (EAE), an animal model for MS, suggesting that HDACi might be a potential therapeutic strategy for MS. However, the function of individual HDAC members in the pathogenesis of EAE is not known. In this study we report that mice with a T cell-specific deletion of HDAC1 (using the Cd4-Cre deleter strain; HDAC1-cKO) were completely resistant to EAE despite the ability of HDAC1cKO CD4+ T cells to differentiate into Th17 cells. RNA sequencing revealed STAT1 as a prominent upstream regulator of differentially expressed genes in activated HDAC1-cKO CD4+ T cells and this was accompanied by a strong increase in phosphorylated STAT1 (pSTAT1). This suggests that HDAC1 controls STAT1 activity in activated CD4+ T cells. Increased pSTAT1 levels correlated with a reduced expression of the chemokine receptors Ccr4 and Ccr6, which are important for the migration of T cells into the CNS. Finally, EAE susceptibility was restored in WT:HDAC1-cKO mixed BM chimeric mice, indicating a cell-autonomous defect. Our data demonstrate a novel pathophysiological role for HDAC1 in EAE and provide evidence that selective inhibition of HDAC1 might be a promising strategy for the treatment of MS.


Subject(s)
Encephalomyelitis, Autoimmune, Experimental/metabolism , Histone Deacetylase 1/metabolism , Multiple Sclerosis/metabolism , STAT1 Transcription Factor/metabolism , Th17 Cells/physiology , Animals , Cell Movement , Cells, Cultured , Chimera , Disease Models, Animal , Encephalomyelitis, Autoimmune, Experimental/immunology , Histone Deacetylase 1/genetics , Humans , Mice , Mice, Knockout , Multiple Sclerosis/immunology , Receptors, CCR4/metabolism , Receptors, CCR6/metabolism , STAT1 Transcription Factor/genetics
17.
Methods Mol Biol ; 1510: 169-192, 2017.
Article in English | MEDLINE | ID: mdl-27761821

ABSTRACT

Histone deacetylases (HDACs) play crucial roles during mammalian development and for cellular homeostasis. In addition, these enzymes are promising targets for small molecule inhibitors in the treatment of cancer and neurological diseases. Conditional HDAC knock-out mice are excellent tools for defining the functions of individual HDACs in vivo and for identifying the molecular targets of HDAC inhibitors in disease. Here, we describe the generation of tissue-specific HDAC knock-out mice and delineate a strategy for the generation of conditional HDAC knock-in mice.


Subject(s)
Blastocyst/enzymology , Chromatin/metabolism , Epigenesis, Genetic , Genetic Vectors/metabolism , Histone Deacetylase 1/genetics , Mouse Embryonic Stem Cells/enzymology , Animals , Blastocyst/cytology , Blotting, Southern , CRISPR-Cas Systems , Chromatin/chemistry , Chromosomes, Artificial, Bacterial/chemistry , Chromosomes, Artificial, Bacterial/metabolism , Crosses, Genetic , Female , Gene Knock-In Techniques , Genetic Vectors/chemistry , Histone Deacetylase 1/deficiency , Homologous Recombination , Integrases/genetics , Integrases/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Mouse Embryonic Stem Cells/cytology , Organ Specificity , RNA, Guide, Kinetoplastida/genetics , RNA, Guide, Kinetoplastida/metabolism
18.
Sci Rep ; 6: 30213, 2016 07 26.
Article in English | MEDLINE | ID: mdl-27458029

ABSTRACT

Histone deacetylases (HDACs) catalyze the removal of acetyl molecules from histone and non-histone substrates playing important roles in chromatin remodeling and control of gene expression. Class I HDAC1 is a critical regulator of cell cycle progression, cellular proliferation and differentiation during development; it is also regulated by many post-translational modifications (PTMs). Herein we characterize a new mitosis-specific phosphorylation of HDAC1 driven by Aurora kinases A and B. We show that this phosphorylation affects HDAC1 enzymatic activity and it is critical for the maintenance of a proper proliferative and developmental plan in a complex organism. Notably, we find that Aurora-dependent phosphorylation of HDAC1 regulates histone acetylation by modulating the expression of genes directly involved in the developing zebrafish central nervous system. Our data represent a step towards the comprehension of HDAC1 regulation by its PTM code, with important implications in unravelling its roles both in physiology and pathology.


Subject(s)
Aurora Kinases/metabolism , Embryonic Development , Histone Deacetylase 1/metabolism , Mitosis , Zebrafish/embryology , Acetylation , Animals , Genes, Regulator , Histones/metabolism , Phosphorylation
19.
Mol Cell Biol ; 36(3): 462-74, 2016 02 01.
Article in English | MEDLINE | ID: mdl-26598605

ABSTRACT

The class I histone deacetylases (HDACs) HDAC1 and HDAC2 play partially redundant roles in the regulation of gene expression and mouse development. As part of multisubunit corepressor complexes, these two deacetylases exhibit both enzymatic and nonenzymatic functions. To examine the impact of the catalytic activities of HDAC1 and HDAC2, we generated knock-in mice expressing catalytically inactive isoforms, which are still incorporated into the HDAC1/HDAC2 corepressor complexes. Surprisingly, heterozygous mice expressing catalytically inactive HDAC2 die within a few hours after birth, while heterozygous HDAC1 mutant mice are indistinguishable from wild-type littermates. Heterozygous HDAC2 mutant mice show an unaltered composition but reduced associated deacetylase activity of corepressor complexes and exhibit a more severe phenotype than HDAC2-null mice. They display changes in brain architecture accompanied by premature expression of the key regulator protein kinase C delta. Our study reveals a dominant negative effect of catalytically inactive HDAC2 on specific corepressor complexes resulting in histone hyperacetylation, transcriptional derepression, and, ultimately, perinatal lethality.


Subject(s)
Histone Deacetylase 2/genetics , Histone Deacetylase 2/metabolism , Mice/growth & development , Animals , Female , Gene Deletion , Gene Expression , Gene Knock-In Techniques , Histone Deacetylase 1/genetics , Histone Deacetylase 1/metabolism , Male , Mice/genetics , Mice/metabolism , Mice, Inbred C57BL , Mutagenesis, Site-Directed , Phenotype , Point Mutation , Transcriptional Activation
20.
MAbs ; 8(1): 37-42, 2016.
Article in English | MEDLINE | ID: mdl-26467746

ABSTRACT

Histone deacetylases (HDACs) are modification enzymes that regulate a plethora of biological processes. HDAC1, a crucial epigenetic modifier, is deregulated in cancer and subjected to a variety of post-translational modifications. Here, we describe the generation of a new monoclonal antibody that specifically recognizes a novel highly dynamic prophase phosphorylation of serine 406-HDAC1, providing a powerful tool for detecting early mitotic cells.


Subject(s)
Antibodies, Monoclonal, Murine-Derived/chemistry , Histone Deacetylase 1 , Phosphoproteins , Prophase , Animals , Histone Deacetylase 1/chemistry , Histone Deacetylase 1/metabolism , Humans , Mice , Phosphoproteins/chemistry , Phosphoproteins/metabolism , Phosphorylation
SELECTION OF CITATIONS
SEARCH DETAIL
...