Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Mol Ecol ; 32(22): 6027-6043, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37830492

ABSTRACT

Social insects are models for studies of phenotypic plasticity. Ant queens and workers vary in fecundity and lifespan, which are enhanced and extended in queens. Yet, the regulatory mechanisms underlying this variation are not well understood. Ant queens live and reproduce for years, so that they need to protect their germline from transposable element (TE) activity, which may be redundant in short-lived, often sterile workers. We analysed the expression of two protective classes of small RNAs, microRNAs (miRNAs) and Piwi-interacting RNAs (piRNAs), in various tissues, castes and age classes of the ant Temnothorax rugatulus. In queens, piRNAs were highly abundant in ovaries with TEs being their clear targets, with reduced but still detectable piRNA-specific ping-pong signatures in thorax and brains. piRNA pathway activity varied little with age in queens. Moreover, the reduced ovaries of workers also exhibited similar piRNA activity and this not only in young, fertile workers, but also in older foragers with regressed ovaries. Therefore, these ants protect their germline through piRNA activity, regardless of ovarian development, age or caste, even in sterile workers often considered the soma of the superorganism. Our tissue-specific miRNA analysis detected the expression of 304 miRNAs, of which 105 were expressed in all tissues, 10 enriched in the brain, three in the thorax, whereas 83 were ovarian-specific. We identified ovarian miRNAs whose expression was related to caste, fecundity and age, and which likely regulate group-specific gene expression. sRNA shifts in young- to middle-aged queens were minor, suggesting delayed senescence in this reproductive caste.


Subject(s)
Ants , MicroRNAs , Animals , Piwi-Interacting RNA , Ants/genetics , Fertility/genetics , MicroRNAs/genetics , Germ Cells
2.
Nat Cell Biol ; 24(2): 217-229, 2022 02.
Article in English | MEDLINE | ID: mdl-35132225

ABSTRACT

Epigenetic inheritance describes the transmission of gene regulatory information across generations without altering DNA sequences, enabling offspring to adapt to environmental conditions. Small RNAs have been implicated in this, through both the oocyte and the sperm. However, as much of the cellular content is extruded during spermatogenesis, it is unclear whether cytoplasmic small RNAs can contribute to epigenetic inheritance through sperm. Here we identify a sperm-specific germ granule, termed the paternal epigenetic inheritance (PEI) granule, that mediates paternal epigenetic inheritance by retaining the cytoplasmic Argonaute protein WAGO-3 during spermatogenesis in Caenorhabditis elegans. We identify the PEI granule proteins PEI-1 and PEI-2, which have distinct functions in this process: granule formation, Argonaute selectivity and subcellular localization. We show that PEI granule segregation is coupled to the transport of sperm-specific secretory vesicles through PEI-2 in an S-palmitoylation-dependent manner. PEI-like proteins are found in humans, suggesting that the identified mechanism may be conserved.


Subject(s)
Argonaute Proteins/metabolism , Caenorhabditis elegans Proteins/metabolism , Caenorhabditis elegans/genetics , Cytoplasmic Granules/genetics , Epigenesis, Genetic , Paternal Inheritance , Spermatozoa/physiology , Animals , Animals, Genetically Modified , Argonaute Proteins/genetics , Caenorhabditis elegans/metabolism , Caenorhabditis elegans Proteins/genetics , Cytoplasmic Granules/metabolism , Humans , Lipoylation , Male , Protein Processing, Post-Translational , Spermatozoa/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...