Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 27
Filter
Add more filters










Publication year range
1.
Nat Methods ; 21(2): 170-181, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37710020

ABSTRACT

Images document scientific discoveries and are prevalent in modern biomedical research. Microscopy imaging in particular is currently undergoing rapid technological advancements. However, for scientists wishing to publish obtained images and image-analysis results, there are currently no unified guidelines for best practices. Consequently, microscopy images and image data in publications may be unclear or difficult to interpret. Here, we present community-developed checklists for preparing light microscopy images and describing image analyses for publications. These checklists offer authors, readers and publishers key recommendations for image formatting and annotation, color selection, data availability and reporting image-analysis workflows. The goal of our guidelines is to increase the clarity and reproducibility of image figures and thereby to heighten the quality and explanatory power of microscopy data.


Subject(s)
Checklist , Publishing , Reproducibility of Results , Image Processing, Computer-Assisted , Microscopy
2.
ArXiv ; 2023 Sep 14.
Article in English | MEDLINE | ID: mdl-36824427

ABSTRACT

Images document scientific discoveries and are prevalent in modern biomedical research. Microscopy imaging in particular is currently undergoing rapid technological advancements. However for scientists wishing to publish the obtained images and image analyses results, there are to date no unified guidelines. Consequently, microscopy images and image data in publications may be unclear or difficult to interpret. Here we present community-developed checklists for preparing light microscopy images and image analysis for publications. These checklists offer authors, readers, and publishers key recommendations for image formatting and annotation, color selection, data availability, and for reporting image analysis workflows. The goal of our guidelines is to increase the clarity and reproducibility of image figures and thereby heighten the quality and explanatory power of microscopy data is in publications.

3.
Mod Pathol ; 36(4): 100088, 2023 04.
Article in English | MEDLINE | ID: mdl-36788087

ABSTRACT

Bone marrow (BM) cellularity assessment is a crucial step in the evaluation of BM trephine biopsies for hematologic and nonhematologic disorders. Clinical assessment is based on a semiquantitative visual estimation of the hematopoietic and adipocytic components by hematopathologists, which does not provide quantitative information on other stromal compartments. In this study, we developed and validated MarrowQuant 2.0, an efficient, user-friendly digital hematopathology workflow integrated within QuPath software, which serves as BM quantifier for 5 mutually exclusive compartments (bone, hematopoietic, adipocytic, and interstitial/microvasculature areas and other) and derives the cellularity of human BM trephine biopsies. Instance segmentation of individual adipocytes is realized through the adaptation of the machine-learning-based algorithm StarDist. We calculated BM compartments and adipocyte size distributions of hematoxylin and eosin images obtained from 250 bone specimens, from control subjects and patients with acute myeloid leukemia or myelodysplastic syndrome, at diagnosis and follow-up, and measured the agreement of cellularity estimates by MarrowQuant 2.0 against visual scores from 4 hematopathologists. The algorithm was capable of robust BM compartment segmentation with an average mask accuracy of 86%, maximal for bone (99%), hematopoietic (92%), and adipocyte (98%) areas. MarrowQuant 2.0 cellularity score and hematopathologist estimations were highly correlated (R2 = 0.92-0.98, intraclass correlation coefficient [ICC] = 0.98; interobserver ICC = 0.96). BM compartment segmentation quantitatively confirmed the reciprocity of the hematopoietic and adipocytic compartments. MarrowQuant 2.0 performance was additionally tested for cellularity assessment of specimens prospectively collected from clinical routine diagnosis. After special consideration for the choice of the cellularity equation in specimens with expanded stroma, performance was similar in this setting (R2 = 0.86, n = 42). Thus, we conclude that these validation experiments establish MarrowQuant 2.0 as a reliable tool for BM cellularity assessment. We expect this workflow will serve as a clinical research tool to explore novel biomarkers related to BM stromal components and may contribute to further validation of future digitalized diagnostic hematopathology workstreams.


Subject(s)
Bone Marrow , Hematology , Humans , Bone Marrow/pathology , Workflow , Bone Marrow Cells/pathology , Bone Marrow Examination
5.
J Microsc ; 284(1): 56-73, 2021 10.
Article in English | MEDLINE | ID: mdl-34214188

ABSTRACT

A modern day light microscope has evolved from a tool devoted to making primarily empirical observations to what is now a sophisticated , quantitative device that is an integral part of both physical and life science research. Nowadays, microscopes are found in nearly every experimental laboratory. However, despite their prevalent use in capturing and quantifying scientific phenomena, neither a thorough understanding of the principles underlying quantitative imaging techniques nor appropriate knowledge of how to calibrate, operate and maintain microscopes can be taken for granted. This is clearly demonstrated by the well-documented and widespread difficulties that are routinely encountered in evaluating acquired data and reproducing scientific experiments. Indeed, studies have shown that more than 70% of researchers have tried and failed to repeat another scientist's experiments, while more than half have even failed to reproduce their own experiments. One factor behind the reproducibility crisis of experiments published in scientific journals is the frequent underreporting of imaging methods caused by a lack of awareness and/or a lack of knowledge of the applied technique. Whereas quality control procedures for some methods used in biomedical research, such as genomics (e.g. DNA sequencing, RNA-seq) or cytometry, have been introduced (e.g. ENCODE), this issue has not been tackled for optical microscopy instrumentation and images. Although many calibration standards and protocols have been published, there is a lack of awareness and agreement on common standards and guidelines for quality assessment and reproducibility. In April 2020, the QUality Assessment and REProducibility for instruments and images in Light Microscopy (QUAREP-LiMi) initiative was formed. This initiative comprises imaging scientists from academia and industry who share a common interest in achieving a better understanding of the performance and limitations of microscopes and improved quality control (QC) in light microscopy. The ultimate goal of the QUAREP-LiMi initiative is to establish a set of common QC standards, guidelines, metadata models and tools, including detailed protocols, with the ultimate aim of improving reproducible advances in scientific research. This White Paper (1) summarizes the major obstacles identified in the field that motivated the launch of the QUAREP-LiMi initiative; (2) identifies the urgent need to address these obstacles in a grassroots manner, through a community of stakeholders including, researchers, imaging scientists, bioimage analysts, bioimage informatics developers, corporate partners, funding agencies, standards organizations, scientific publishers and observers of such; (3) outlines the current actions of the QUAREP-LiMi initiative and (4) proposes future steps that can be taken to improve the dissemination and acceptance of the proposed guidelines to manage QC. To summarize, the principal goal of the QUAREP-LiMi initiative is to improve the overall quality and reproducibility of light microscope image data by introducing broadly accepted standard practices and accurately captured image data metrics.


Subject(s)
Microscopy , Reference Standards , Reproducibility of Results
7.
Bioconjug Chem ; 32(3): 541-552, 2021 03 17.
Article in English | MEDLINE | ID: mdl-33621057

ABSTRACT

Cells are powerful carriers that can help to improve the delivery of nanomedicines. One approach to use cells as carriers is to immobilize the nanoparticulate cargo on the cell surface. While a plethora of chemical conjugation strategies are available to bind nanoparticles to cell surfaces, only relatively little is known about the effects of particle size and cell type on the surface immobilization of nanoparticles. This study investigates the biotin-NeutrAvidin mediated immobilization of model polymer nanoparticles with sizes ranging from 40 nm to 1 µm on two different T cell lines, viz., human Jurkat cells as well as mouse SJL/PLP7 T cells, which are of potential interest for drug delivery across the blood-brain barrier. The nanoparticle cell surface immobilization and the particle surface concentration and distribution were analyzed by flow cytometry and confocal microscopy. The functional properties of nanoparticle-modified SJL/PLP7 T cells were assessed in an ICAM-1 binding assay as well as in a two-chamber setup in which the migration of the particle-modified T cells across an in vitro model of the blood-brain barrier was studied. The results of these experiments highlight the effects of particle size and cell line on the surface immobilization of nanoparticles on living cells.


Subject(s)
Avidin/chemistry , Biotin/chemistry , Nanoparticles/chemistry , Polymers/chemistry , T-Lymphocytes/chemistry , Animals , Blood-Brain Barrier , Humans , Mice
8.
Adv Healthc Mater ; 10(2): e2001375, 2021 01.
Article in English | MEDLINE | ID: mdl-33241667

ABSTRACT

Delivery of therapeutics to the central nervous system (CNS) is challenging due to the presence of the blood-brain barrier (BBB). Amongst various approaches that have been explored to facilitate drug delivery to the CNS, the use of cells that have the intrinsic ability to cross the BBB is relatively unexplored, yet very attractive. This paper presents a first proof-of-concept that demonstrates the feasibility of activated effector/memory CD4+ helper T cells (CD4+ TEM cells) as carriers for the delivery of polymer nanoparticles across the BBB. This study shows that CD4+ TEM cells can be decorated with poly(ethylene glycol)-modified polystyrene nanoparticles using thiol-maleimide coupling chemistry, resulting in the immobilization of ≈105 nanoparticles per cell as determined by confocal microscopy. The ability of these cells to serve as carriers to transport nanoparticles across the BBB is established in vitro and in vivo. Using in vitro BBB models, CD4+ TEM cells are found to be able to transport nanoparticles across the BBB both under static conditions as well as under physiological flow. Finally, upon systemic administration, nanoparticle-modified T cells are shown to enter the brain parenchyma of mice, demonstrating the brain delivery potential of this T cell subset in allogeneic hosts.


Subject(s)
Blood-Brain Barrier , Nanoparticles , Animals , Biological Transport , Drug Delivery Systems , Mice , Polymers , T-Lymphocytes
9.
Cell Host Microbe ; 27(2): 277-289.e6, 2020 02 12.
Article in English | MEDLINE | ID: mdl-32053791

ABSTRACT

Hookworms cause a major neglected tropical disease, occurring after larvae penetrate the host skin. Neutrophils are phagocytes that kill large pathogens by releasing neutrophil extracellular traps (NETs), but whether they target hookworms during skin infection is unknown. Using a murine hookworm, Nippostrongylus brasiliensis, we observed neutrophils being rapidly recruited and deploying NETs around skin-penetrating larvae. Neutrophils depletion or NET inhibition altered larvae behavior and enhanced the number of adult worms following murine infection. Nevertheless, larvae were able to mitigate the effect of NETs by secreting a deoxyribonuclease (Nb-DNase II) to degrade the DNA backbone. Critically, neutrophils were able to kill larvae in vitro, which was enhanced by neutralizing Nb-DNase II. Homologs of Nb-DNase II are present in other nematodes, including the human hookworm, Necator americanus, which also evaded NETs in vitro. These findings highlight the importance of neutrophils in hookworm infection and a potential conserved mechanism of immune evasion.


Subject(s)
Ancylostomatoidea/immunology , Endodeoxyribonucleases/biosynthesis , Extracellular Traps/metabolism , Immune Evasion , Animals , Host-Parasite Interactions , Mice , Neutrophils/metabolism , Nippostrongylus/immunology , Strongylida Infections/immunology
10.
F1000Res ; 9: 1380, 2020.
Article in English | MEDLINE | ID: mdl-33976878

ABSTRACT

The number of grey values that can be displayed on monitors and be processed by the human eye is smaller than the dynamic range of image-based sensors. This makes the visualization of such data a challenge, especially with specimens where small dim structures are equally important as large bright ones, or whenever variations in intensity, such as non-homogeneous staining efficiencies or light depth penetration, becomes an issue. While simple intensity display mappings are easily possible, these fail to provide a one-shot observation that can display objects of varying intensities. In order to facilitate the visualization-based analysis of large volumetric datasets, we developed an easy-to-use ImageJ plugin enabling the compressed display of features within several magnitudes of intensities. The Display Enhancement for Visual Inspection of Large Stacks plugin (DEVILS) homogenizes the intensities by using a combination of local and global pixel operations to allow for high and low intensities to be visible simultaneously to the human eye. The plugin is based on a single, intuitively understandable parameter, features a preview mode, and uses parallelization to process multiple image planes. As output, the plugin is capable of producing a BigDataViewer-compatible dataset for fast visualization. We demonstrate the utility of the plugin for large volumetric image data.


Subject(s)
Image Processing, Computer-Assisted , Light , Humans
11.
Methods Mol Biol ; 2040: 23-37, 2019.
Article in English | MEDLINE | ID: mdl-31432473

ABSTRACT

Visiting the Bio Imaging Search Engine (BISE) (Bio, BISE, Engine, http://biii.eu/, Imaging, Search) website at the time of writing this article, almost 1200 open source assets (components, workflows, collections) were found. This overwhelming range of offer difficults the fact of making a reasonable choice, especially to newcomers. In the following chapter, we briefly sketch the advantages of the open source software (OSS) particularly used for image analysis in the field of life sciences. We introduce both the general OSS idea as well as some programs used for image analysis. Even more, we outline the history of ImageJ as it has served as a role model for the development of more recent software packages. We focus on the programs that are, to our knowledge, the most relevant and widely used in the field of light microscopy, as well as the most commonly used within our facility. In addition, we briefly discuss recent efforts and approaches aimed to share and compare algorithms and introduce software and data sharing good practices as a promising strategy to facilitate reproducibility, software understanding, and optimal software choice for a given scientific problem in the future.


Subject(s)
Image Processing, Computer-Assisted/methods , Microscopy/methods , Software , Algorithms , Biological Science Disciplines/methods , Information Dissemination , Reproducibility of Results
12.
Front Neuroanat ; 13: 26, 2019.
Article in English | MEDLINE | ID: mdl-30906253

ABSTRACT

Multi-user core microscopy facilities are often faced with the challenge to adapt or modify existing instruments. This is essential in order to fulfill the requirements of the user community, who wants to image a wide range of model organisms with varying stains and sample thicknesses. In recent years, lightsheet microscopy has turned into an invaluable tool for both live and cleared sample imaging of many different specimens. This brought up new challenges in terms of sample mounting as the classical approach of attachment onto a coverslip cannot be universally applied. Here we describe the development of a diversified holder which extends the range of samples which can be imaged on a Zeiss Lightsheet microscope Z1. We focus on mounting strategies of cleared specimens; however, the holder and mounting strategy can be applied to live specimens too. The proposed methodology provides very high flexibility along with numerous possibilities for adaptation based on imaging specimen size, condition and available clearing reagents. Moreover, the described mounting strategies can be applied to other light sheet microscopes that can mount 1 mL syringes.

13.
Biomacromolecules ; 20(1): 231-242, 2019 01 14.
Article in English | MEDLINE | ID: mdl-30395472

ABSTRACT

Cellular uptake and intracellular trafficking of polymer conjugates or polymer nanoparticles is typically monitored using fluorescence-based techniques such as confocal microscopy. While these methods have provided a wealth of insight into the internalization and trafficking of polymers and polymer nanoparticles, they require fluorescent labeling of the polymer or polymer nanoparticle. Because in biological media fluorescent dyes may degrade, be cleaved from the polymer or particle, or even change uptake and trafficking pathways, there is an interest in fluorescent label-free methods to study the interactions between cells and polymer nanomedicines. This article presents a first proof-of-concept that demonstrates the feasibility of NanoSIMS to monitor the intracellular localization of polymer conjugates. For the experiments reported here, poly( N-(2-hydroxypropyl) methacrylamide)) (PHPMA) was selected as a prototypical polymer-drug conjugate. This PHPMA polymer contained a 19F-label at the α-terminus, which was introduced in order to allow NanoSIMS analysis. Prior to the NanoSIMS experiments, the uptake and intracellular trafficking of the polymer was established using confocal microscopy and flow cytometry. These experiments not only provided detailed insight into the kinetics of these processes but were also important to select time points for the NanoSIMS analysis. For the NanoSIMS experiments, HeLa cells were investigated that had been exposed to the PHPMA polymer for a period of 4 or 15 h, which was known to lead to predominant lysosomal accumulation of the polymer. NanoSIMS analysis of resin-embedded and microtomed samples of the cells revealed a punctuated fluorine signal, which was found to colocalize with the sulfur signal that was attributed to the lysosomal compartments. The localization of the polymer in the endolysosomal compartments was confirmed by TEM analysis on the same cell samples. The results of this study illustrate the potential of NanoSIMS to study the uptake and intracellular trafficking of polymer nanomedicines.


Subject(s)
Drug Carriers/pharmacology , Endocytosis , Polymethacrylic Acids/pharmacology , Cell Survival/drug effects , Endosomes/metabolism , HeLa Cells , Humans , Lysosomes/metabolism , Mass Spectrometry
14.
PLoS One ; 12(7): e0179752, 2017.
Article in English | MEDLINE | ID: mdl-28746386

ABSTRACT

The use of micropatterns has transformed investigations of dynamic biological processes by enabling the reproducible analysis of live cells using time-lapse fluorescence microscopy. With micropatterns, thousands of individual cells can be efficiently imaged in parallel, rendering the approach well suited for screening projects. Despite being powerful, such screens remain challenging in terms of data handling and analysis. Typically, only a fraction of micropatterns is occupied in a manner suitable to monitor a given phenotypic output. Moreover, the presence of dying or otherwise compromised cells complicates the analysis. Therefore, focusing strictly on relevant cells in such large time-lapse microscopy dataset poses interesting analysis challenges that are not readily met by existing software packages. This motivated us to develop an image analysis pipeline that handles all necessary image processing steps within one open-source platform to detect and analyze individual cells seeded on micropatterns through mitosis. We introduce a comprehensive image analysis pipeline running on Fiji termed TRACMIT (pipeline for TRACking and analyzing cells on micropatterns through MITosis). TRACMIT was developed to rapidly and accurately assess the orientation of the mitotic spindle during metaphase in time-lapse fluorescence microscopy of human cells expressing mCherry::histone 2B and plated on L-shaped micropatterns. This solution enables one to perform the entire analysis from the raw data, avoiding the need to save intermediate images, thereby decreasing data volume and thus reducing the data that needs to be processed. We first select micropatterns containing a single cell and then identify anaphase figures in the time-lapse recording. Next, TRACMIT tracks back in time until metaphase, when the angle of the mitotic spindle with respect to the micropattern is assessed. We designed the pipeline to allow for manual validation of selected cells with a simple user interface, and to enable analysis of cells plated on micropatterns of different shapes. For ease of use, the entire pipeline is provided as a series of Fiji/ImageJ macros, grouped into an ActionBar. In conclusion, the open source TRACMIT pipeline enables high-throughput analysis of single mitotic cells on micropatterns, thus accurately and efficiently allowing automatic determination of spindle positioning from time-lapse recordings.


Subject(s)
Cell Tracking/methods , Microscopy, Fluorescence/methods , Mitosis , Time-Lapse Imaging/methods , HeLa Cells , Histones/genetics , Histones/metabolism , Humans , Luminescent Proteins/genetics , Luminescent Proteins/metabolism , Reproducibility of Results , Spindle Apparatus , Red Fluorescent Protein
15.
Methods ; 115: 28-41, 2017 02 15.
Article in English | MEDLINE | ID: mdl-28057586

ABSTRACT

Images in fluorescence microscopy are inherently blurred due to the limit of diffraction of light. The purpose of deconvolution microscopy is to compensate numerically for this degradation. Deconvolution is widely used to restore fine details of 3D biological samples. Unfortunately, dealing with deconvolution tools is not straightforward. Among others, end users have to select the appropriate algorithm, calibration and parametrization, while potentially facing demanding computational tasks. To make deconvolution more accessible, we have developed a practical platform for deconvolution microscopy called DeconvolutionLab. Freely distributed, DeconvolutionLab hosts standard algorithms for 3D microscopy deconvolution and drives them through a user-oriented interface. In this paper, we take advantage of the release of DeconvolutionLab2 to provide a complete description of the software package and its built-in deconvolution algorithms. We examine several standard algorithms used in deconvolution microscopy, notably: Regularized inverse filter, Tikhonov regularization, Landweber, Tikhonov-Miller, Richardson-Lucy, and fast iterative shrinkage-thresholding. We evaluate these methods over large 3D microscopy images using simulated datasets and real experimental images. We distinguish the algorithms in terms of image quality, performance, usability and computational requirements. Our presentation is completed with a discussion of recent trends in deconvolution, inspired by the results of the Grand Challenge on deconvolution microscopy that was recently organized.


Subject(s)
Image Processing, Computer-Assisted/methods , Microscopy, Confocal/methods , Microscopy, Fluorescence/methods , Software , Algorithms , Animals , Eukaryotic Cells/ultrastructure , Image Processing, Computer-Assisted/statistics & numerical data , Microscopy, Confocal/instrumentation , Microscopy, Fluorescence/instrumentation , Signal-To-Noise Ratio
16.
J Cell Biol ; 208(7): 897-911, 2015 Mar 30.
Article in English | MEDLINE | ID: mdl-25825517

ABSTRACT

Cell-cell fusion is essential for fertilization. For fusion of walled cells, the cell wall must be degraded at a precise location but maintained in surrounding regions to protect against lysis. In fission yeast cells, the formin Fus1, which nucleates linear actin filaments, is essential for this process. In this paper, we show that this formin organizes a specific actin structure-the actin fusion focus. Structured illumination microscopy and live-cell imaging of Fus1, actin, and type V myosins revealed an aster of actin filaments whose barbed ends are focalized near the plasma membrane. Focalization requires Fus1 and type V myosins and happens asynchronously always in the M cell first. Type V myosins are essential for fusion and concentrate cell wall hydrolases, but not cell wall synthases, at the fusion focus. Thus, the fusion focus focalizes cell wall dissolution within a broader cell wall synthesis zone to shift from cell growth to cell fusion.


Subject(s)
Cell Wall/metabolism , Hydrolases/metabolism , Myosin Type V/metabolism , Schizosaccharomyces pombe Proteins/metabolism , Schizosaccharomyces/cytology , Actin Cytoskeleton/metabolism , Actins/metabolism , Cell Fusion , Cell Membrane/metabolism , Cytoskeletal Proteins/metabolism , Myosins/metabolism
17.
J Immunol ; 194(3): 1154-63, 2015 Feb 01.
Article in English | MEDLINE | ID: mdl-25548226

ABSTRACT

Infections with intestinal helminths severely impact on human and veterinary health, particularly through the damage that these large parasites inflict when migrating through host tissues. Host immunity often targets the motility of tissue-migrating helminth larvae, which ideally should be mimicked by anti-helminth vaccines. However, the mechanisms of larval trapping are still poorly defined. We have recently reported an important role for Abs in the rapid trapping of tissue-migrating larvae of the murine parasite Heligmosomoides polygyrus bakeri. Trapping was mediated by macrophages (MΦ) and involved complement, activating FcRs, and Arginase-1 (Arg1) activity. However, the receptors and Ab isotypes responsible for MΦ adherence and Arg1 induction remained unclear. Using an in vitro coculture assay of H. polygyrus bakeri larvae and bone marrow-derived MΦ, we now identify CD11b as the major complement receptor mediating MΦ adherence to the larval surface. However, larval immobilization was largely independent of CD11b and instead required the activating IgG receptor FcγRI (CD64) both in vitro and during challenge H. polygyrus bakeri infection in vivo. FcγRI signaling also contributed to the upregulation of MΦ Arg1 expression in vitro and in vivo. Finally, IgG2a/c was the major IgG subtype from early immune serum bound by FcγRI on the MΦ surface, and purified IgG2c could trigger larval immobilization and Arg1 expression in MΦ in vitro. Our findings reveal a novel role for IgG2a/c-FcγRI-driven MΦ activation in the efficient trapping of tissue-migrating helminth larvae and thus provide important mechanistic insights vital for anti-helminth vaccine development.


Subject(s)
Antibodies, Helminth/immunology , CD11b Antigen/metabolism , Helminthiasis, Animal/immunology , Helminthiasis, Animal/metabolism , Helminths/immunology , Receptors, IgG/metabolism , Animals , Arginase/genetics , Arginase/metabolism , Complement System Proteins/immunology , Complement System Proteins/metabolism , Gene Expression , Helminthiasis, Animal/genetics , Immune Sera/immunology , Immunoglobulin G/immunology , Immunoglobulin G/metabolism , Interleukin-33 , Interleukins/metabolism , Larva , Macrophage Activation/immunology , Macrophages/immunology , Mice, Knockout , Models, Biological , Protein Binding , Receptors, Interleukin-4/genetics , Receptors, Interleukin-4/metabolism , Signal Transduction
18.
Biomed Opt Express ; 5(10): 3326-36, 2014 Oct 01.
Article in English | MEDLINE | ID: mdl-25360353

ABSTRACT

Within the last decade, super-resolution methods that surpass the diffraction limit of light microscopy have provided invaluable insight into a variety of biological questions. Each of these approaches has inherent advantages and limitations, such that their combination is a powerful means to transform them into versatile tools for the life sciences. Here, we report the development of a combined SIM and STORM setup that maintains the optimal resolution of both methods and which is coupled to image registration to localize biological structures in 3D using multicolor labeling. We utilized this workflow to determine the localization of Bld12p/CrSAS-6 in purified basal bodies of Chlamydomonas reinhardtii with utmost precision, demonstrating its usefulness for accurate molecular mapping in 3D.

19.
PLoS Pathog ; 9(11): e1003771, 2013.
Article in English | MEDLINE | ID: mdl-24244174

ABSTRACT

Approximately one-third of the world's population suffers from chronic helminth infections with no effective vaccines currently available. Antibodies and alternatively activated macrophages (AAM) form crucial components of protective immunity against challenge infections with intestinal helminths. However, the mechanisms by which antibodies target these large multi-cellular parasites remain obscure. Alternative activation of macrophages during helminth infection has been linked to signaling through the IL-4 receptor alpha chain (IL-4Rα), but the potential effects of antibodies on macrophage differentiation have not been explored. We demonstrate that helminth-specific antibodies induce the rapid trapping of tissue migrating helminth larvae and prevent tissue necrosis following challenge infection with the natural murine parasite Heligmosomoides polygyrus bakeri (Hp). Mice lacking antibodies (JH (-/-)) or activating Fc receptors (FcRγ(-/-)) harbored highly motile larvae, developed extensive tissue damage and accumulated less Arginase-1 expressing macrophages around the larvae. Moreover, Hp-specific antibodies induced FcRγ- and complement-dependent adherence of macrophages to larvae in vitro, resulting in complete larval immobilization. Antibodies together with helminth larvae reprogrammed macrophages to express wound-healing associated genes, including Arginase-1, and the Arginase-1 product L-ornithine directly impaired larval motility. Antibody-induced expression of Arginase-1 in vitro and in vivo occurred independently of IL-4Rα signaling. In summary, we present a novel IL-4Rα-independent mechanism of alternative macrophage activation that is antibody-dependent and which both mediates anti-helminth immunity and prevents tissue disruption caused by migrating larvae.


Subject(s)
Antibodies, Helminth/immunology , Cell Differentiation/immunology , Macrophages/immunology , Nematospiroides dubius/immunology , Receptors, Cell Surface/immunology , Strongylida Infections/immunology , Animals , Antibodies, Helminth/genetics , Arginase/genetics , Arginase/immunology , Cell Differentiation/genetics , Gene Expression Regulation, Enzymologic/genetics , Gene Expression Regulation, Enzymologic/immunology , Larva , Mice , Mice, Knockout , Receptors, Cell Surface/genetics , Signal Transduction/genetics , Signal Transduction/immunology , Strongylida Infections/genetics
20.
Lab Chip ; 12(16): 2843-9, 2012 Aug 21.
Article in English | MEDLINE | ID: mdl-22647973

ABSTRACT

We report a reliable strategy to perform automated image cytometry of single (non-adherent) stem cells captured in microfluidic traps. The method rapidly segments images of an entire microfluidic chip based on the detection of horizontal edges of microfluidic channels, from where the position of the trapped cells can be derived and the trapped cells identified with very high precision (>97%). We used this method to successfully quantify the efficiency and spatial distribution of single-cell loading of a microfluidic chip comprised of 2048 single-cell traps. Furthermore, cytometric analysis of trapped primary hematopoietic stem cells (HSC) faithfully recapitulated the distribution of cells in the G1 and S/G2-M phase of the cell cycle that was measured by flow cytometry. This approach should be applicable to automatically track single live cells in a wealth of microfluidic systems.


Subject(s)
Hematopoietic Stem Cells/cytology , Microfluidic Analytical Techniques/methods , Animals , Automation , Bone Marrow Cells/cytology , Cell Division , Dimethylpolysiloxanes/chemistry , Flow Cytometry , G1 Phase , G2 Phase , Mice , Mice, Inbred C57BL , Microfluidic Analytical Techniques/instrumentation , S Phase
SELECTION OF CITATIONS
SEARCH DETAIL
...