Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Oecologia ; 192(2): 449-462, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31960145

ABSTRACT

In forest communities, conspecific density/distance dependence (CDD) is an important factor regulating diversity. It remains unknown how and the extent to which gap creation alters the mode and strength of CDD via changes in the relative importance of pathogens and mycorrhizae. Seeds of two hardwoods (i.e., Acer mono associated with arbuscular mycorrhizae [AM] and Quercus serrata associated with ectomycorrhizae [EM]) were sown reciprocally at four distances from the boundary between Acer- and Quercus-dominated forests towards forest interior in each of forest understories (FUs) and gaps. The causes of seed and seedling mortality, seedling growth and colonization of mycorrhizal fungi were investigated. In Acer, seed and seedling mortality were highest in Acer forests and gradually decreased towards the interior of Quercus forests in FU, mainly due to severe attack of soil pathogens, invertebrates, and leaf diseases. The reverse was true in gaps, due to reduction of damping-off damage caused by distance-dependent colonization of AM. In Quercus, most seeds and seedlings were eaten by vertebrates in FUs. The seedling mortality caused by leaf diseases was not high, even beneath conspecific forests with higher colonization of EM in gaps, suggesting a positive EM influence. In both species, seedling mass was greatest in conspecific forests and gradually decreased towards the interior of heterospecific forests in gaps, due to higher colonization of mycorrhizae near conspecifics. In conclusion, light conditions strongly altered the mode of CDD via changes in relative influence of pathogens and mycorrhizae, suggesting that gap creation may regulate species diversity via changes in the mode of CDD.


Subject(s)
Acer , Mycorrhizae , Animals , Forests , Seedlings , Trees
2.
Oecologia ; 189(4): 971-980, 2019 Apr.
Article in English | MEDLINE | ID: mdl-30919108

ABSTRACT

An important factor controlling tree species diversity is conspecific density dependence (CDD). Adult trees associated with arbuscular mycorrhiza (AM) and ectomycorrhiza (ECM) can exhibit negative and positive CDD effects on conspecific recruitment, respectively. However, the extent to which these mycorrhizal associations affect spatial distributions of individual trees and their relative abundances within forests through CDD remains uncertain. We analysed changes in spatial correlations between adults and conspecific juveniles at different growth stages of five hardwood species in a 6-ha plot of an old-growth forest using a point pattern analysis. The clump sizes of large individuals were also evaluated using the Iδ index (a measure of individual dispersion) in 24 species. In two AM-associated species, juveniles were distributed at greater distances with increasing size or were always distributed at a distance from adults, resulting in small clumps of adults. In contrast, juveniles of two ECM-associated species were distributed close to adults during early or late growth stage, resulting in large clumps of adults. Juveniles of an ECM-associated species disappeared with increasing size, probably due to shade intolerance. In 24 tree species with large numbers of individuals within a plot, the relative basal area was related to both mycorrhizal type and maximum diameter, suggesting that the relative abundance of a species is largely related to its mycorrhizal associations and maximum plant size. This study strongly demonstrated that mycorrhizal associations play an important role in determining the spatial distribution patterns and community structure of tree species through CDD.


Subject(s)
Mycorrhizae , Trees , Forests , Plants
3.
Oecologia ; 123(2): 208-215, 2000 May.
Article in English | MEDLINE | ID: mdl-28308725

ABSTRACT

To evaluate the importance of developmental constraints in the determination of the relative importance of seed size and emergence time, early seedling performance of two woody species with contrasting growth phenology were observed under competitive conditions with tall herbs in an early successional habitat. The oak, Quercus mongolica var. grosseserrata, with determinate shoot development (a single leaf flush), showed a marked influence of seed size on subsequent seedling height growth and survival. Because of determinate growth, emergence time had negligible effects. The walnut, Juglans ailanthifolia, which continued to produce new leaves throughout the growing season (indeterminate development), showed a marked influence of time of emergence on seedling performance, because it affected the amount of growth that could be achieved; seed size, however, had negligible effects as the seedlings grew. These results suggest that relative importance of seed size and emergence time for early seedling performance is closely associated with developmental constraints (growth phenology).

4.
Tree Physiol ; 19(12): 793-797, 1999 Oct 01.
Article in English | MEDLINE | ID: mdl-10562395

ABSTRACT

To determine how plants control leaf phenology to maximize annual carbon gain, I examined ontogenetic changes in leaf phenology of Japanese elm, Ulmus davidiana var. japonica Nakai plants of different ages growing in contrasting light environments. Leaf emergence occurred earlier in 1- and 2-year-old seedlings than in current-year seedlings. Although leaf emergence was not affected by light conditions at the sites, it was influenced by plant height. The delay in leaf emergence increased with increasing plant height. These traits indicate that seedlings that received the least light during the summer intercepted light for a long period during the spring; however, the advantage of earlier leaf emergence decreased with increasing plant height. At each site, 1-year-old seedlings had a longer duration of leaf emergence than adults, because of a longer period of favorable light conditions even in the forest understory. Duration of leaf emergence, leaf duration and leaf longevity were usually longer in sun than in shade for both seedlings and adults; however, flexibility in the response to light was greater in seedlings than in adults. The plastic response in leaf phenology during the juvenile stages may contribute to the optimization of light acquisition in habitats with differing light conditions, thereby enhancing seedling survival.

SELECTION OF CITATIONS
SEARCH DETAIL
...