Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 64
Filter
1.
Water Res ; 253: 121322, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38387267

ABSTRACT

The fate of organic compounds released from tire wear particle (TWP) in the aquatic environment is still poorly understood. This is especially true near sources where biotic and abiotic transformation and leaching from TWP are simultaneous and competing processes. To address this knowledge-gap an experiment was performed, allowing for biodegradation (a) during the leaching from a suspension of cryo-milled tire tread (CMTT) and (b) subsequent to leaching. Besides measuring the Dissolved Organic Carbon (DOC) content, 19 tire-related chemicals were quantified, and non-target screening was performed by LC-HRMS. The non-inoculated control experiment exhibited a DOC of up to 4 mg g-1, with up to 700 µg g-1 of 1,3-diphenylguanidine (DPG) as the most prominent compound, followed by three benzothiazoles (2-mercaptobenzothiazole (2-MBT), 2-hydroxybenzothiazole (2-OHBT) and benzothiazole-2-sulfonic acid (BTSA); 50 µg g-1 each) and 4-hydroxydiphenylamine (4-HDPA) (50 µg g-1). Biodegradation reduced the DOC by 88 % and the concentration of most organic compounds by more than 85 %. At the end of the experiment hexamethoxymethylmelamine (HMMM) was the most prominent single compounds (18 µg g-1). Non-target screening showed a more complex picture. Another 25 transformation products (TPs) of N-(1,3-dimethylbutyl)-N'-phenyl-p-phenylenediamine (6-PPD) and 44 TPs and derivatives related to DPG were detected in solution, of which 11 and 28 were still present after or formed by biodegradation, respectively. Of these 39 TPs and derivatives, 31 could be detected in road runoff samples. This study provides a more comprehensive picture of the leachables of tire particles that are of environmental relevance. It also outlines that derivatives of tire additives formed during tire production and use may deserve more attention as leachables. The large extent of biodegradation of tire leachables suggests that settling ponds may be a useful treatment option for road runoff.


Subject(s)
Dissolved Organic Matter , Organic Chemicals
2.
Environ Sci Technol ; 57(41): 15598-15607, 2023 10 17.
Article in English | MEDLINE | ID: mdl-37782849

ABSTRACT

N-(1,3-Dimethylbutyl)-N'-phenyl-p-phenylenediamine (6-PPD) is a widely used antioxidant in tire rubber known to enter the aquatic environment via road runoff. The associated transformation product (TP) 6-PPD quinone (6-PPDQ) causes extreme acute toxicity in some fish species (e.g., coho salmon). To interpret the species-specific toxicity, information about biotransformation products of 6-PPDQ would be relevant. This study investigated toxicokinetics of 6-PPD and 6-PPDQ in the zebrafish embryo (ZFE) model. Over 96 h of exposure, 6-PPD and 6-PPDQ accumulated in the ZFE with concentration factors ranging from 140 to 2500 for 6-PPD and 70 to 220 for 6-PPDQ. A total of 22 TPs of 6-PPD and 12 TPs of 6-PPDQ were tentatively identified using liquid chromatography coupled to high-resolution mass spectrometry. After 96 h of exposure to 6-PPD, the TPs of 6-PPD comprised 47% of the total peak area (TPA), with 4-hydroxydiphenylamine being the most prominent in the ZFE. Upon 6-PPDQ exposure, >95% of 6-PPDQ taken up in the ZFE was biotransformed, with 6-PPDQ + O + glucuronide dominating (>80% of the TPA). Among other TPs of 6-PPD, a reactive N-phenyl-p-benzoquinone imine was found. The knowledge of TPs of 6-PPD and 6-PPDQ from this study may support biotransformation studies in other organisms.


Subject(s)
Benzoquinones , Phenylenediamines , Zebrafish , Animals , Biotransformation , Chromatography, Liquid , Rubber/toxicity , Zebrafish/embryology , Zebrafish/metabolism , Embryo, Nonmammalian/metabolism , Toxicokinetics , Phenylenediamines/analysis , Phenylenediamines/pharmacokinetics , Phenylenediamines/toxicity , Benzoquinones/analysis , Benzoquinones/pharmacokinetics , Benzoquinones/toxicity
3.
Sci Total Environ ; 904: 166679, 2023 Dec 15.
Article in English | MEDLINE | ID: mdl-37673268

ABSTRACT

Tire and road wear particles (TRWP) are generated in large quantity by automobile traffic on roads but their way of degradation in the environment is largely unclear. Laboratory experiments were performed on the effect of elevated temperature (simulating 2-3 years), sunlight exposure (simulating 0.5 years) and mechanical stress on the physical properties and chemical composition of TRWP and of cryo-milled tire tread (CMTT). No significant effects were observed of the applied mechanical stress on mean properties of pristine particles. After sunlight exposure up to 40 % in mass were lost from the TRWP, likely due to the loss of mineral incrustations from their surface. The chemical composition of TRWP and CMTT was characterized by determining 27 compounds, antioxidants (phenylene diamines), vulcanization agents (benzothiazoles and guanidines) and their transformation products (TPs). Extractables of TRWP (580-850 µg/g) were dominated by TPs, namely benzothiazolesulfonic acid (BTSA). CMTT showed much higher amounts of extractables (4600 µg/g) which were dominated by parent chemicals such as N-(1,3-dimethylbutyl)-N'-phenyl-1,4-phenylenediamine (6-PPD), diphenylguanidine (DPG) and mercaptobenzothiazole (MBT). Sunlight exposure affected the amount of extractables more strongly than elevated temperature, for TRWP (-45 % vs -20 %) and CMTT (-80 % vs -25 %) and provoked a clear shift from parent compounds to their TPs. After sunlight exposure extractables of TRWP were dominated by BTSA and DPG. Sunlight exposure drastically reduced the 6-PPD amount extracted from both, TRWP and CMTT (-93 %, -98 %), while its quinone (6-PPDQ) increased by around 1 % of the 6-PPD decrease, only. For many TPs, concentration in leachates were higher than in extracts, indicating ongoing transformation of their parent compounds during leaching. These results highlight that abiotic aging of TRWP leads to strong changes in their chemical composition which affect their particle properties and are of relevance for the environmental exposure to tire-related chemicals.

4.
J Hazard Mater ; 450: 131066, 2023 05 15.
Article in English | MEDLINE | ID: mdl-36857831

ABSTRACT

Several oxidative treatment technologies, such as ozonation or Fenton reaction, have been studied and applied to remove monocyclic hydroaromatic carbon from water. Despite decades of application, little seems to be known about formation of transformation products while employing different ozone- or ∙OH-based treatment methods and their fate in biodegradation. In this study, we demonstrate that O3/H2O2 treatment of benzene, toluene, ethylbenzene (BTE), and benzoic acid (BA) leads to less hydroxylated aromatic transformation products compared to UV/H2O2 as reference system - this at a similar ∙OH exposure and parent compound removal efficiency. Aerobic biodegradation tests after oxidation of 0.15 mM BA (12.6 mg C L-1 theoretical DOC) revealed that a less biodegradable DOC fraction > 4 mg C L-1 was formed in both oxidative treatments compared to the BA control. No advantage of ozonation over UV/H2O2 treatment was observed in terms of mineralization capabilities, however, we detected less transformation products after oxidation and biodegradation using high-resolution mass spectrometry. Biodegradation of BA that was not oxidized was more complete with minimal organic residual. Overall, the study provides new insights into the oxidation of monocyclic aromatics and raises questions regarding the biodegradability of oxidation products, which is relevant for several treatment applications.


Subject(s)
Hydrocarbons, Aromatic , Ozone , Water Pollutants, Chemical , Water Purification , Water , Hydrogen Peroxide/chemistry , Water Pollutants, Chemical/chemistry , Oxidation-Reduction , Hydrocarbons, Aromatic/analysis , Ozone/chemistry , Water Purification/methods
5.
Environ Sci Technol ; 57(9): 3527-3537, 2023 03 07.
Article in English | MEDLINE | ID: mdl-36802550

ABSTRACT

High resolution mass spectrometry (HRMS) coupled to either gas chromatography or reversed-phase liquid chromatography is the generic method to identify unknown disinfection byproducts (DBPs) but can easily overlook their highly polar fractions. In this study, we applied an alternative chromatographic separation method, supercritical fluid chromatography-HRMS, to characterize DBPs in disinfected water. In total, 15 DBPs were tentatively identified for the first time as haloacetonitrilesulfonic acids, haloacetamidesulfonic acids, and haloacetaldehydesulfonic acids. Cysteine, glutathione, and p-phenolsulfonic acid were found as precursors during lab-scale chlorination, with cysteine providing the highest yield. A mixture of the labeled analogues of these DBPs was prepared by chlorination of 13C3-15N-cysteine and analyzed using nuclear magnetic resonance spectroscopy for structural confirmation and quantification. A total of 6 drinking water treatment plants utilizing various source waters and treatment trains produced sulfonated DBPs upon disinfection. Those were widespread in the tap water of 8 cities across Europe, with estimated concentrations up to 50 and 800 ng/L for total haloacetonitrilesulfonic acids and haloacetaldehydesulfonic acids, respectively. Up to 850 ng/L haloacetonitrilesulfonic acids were found in 3 public swimming pools. Considering the stronger toxicity of haloacetonitriles, haloacetamides, and haloacetaldehydes than the regulated DBPs, these newly found sulfonic acid derivatives may also pose a health risk.


Subject(s)
Chromatography, Supercritical Fluid , Disinfectants , Drinking Water , Water Pollutants, Chemical , Water Purification , Disinfection/methods , Disinfectants/analysis , Disinfectants/chemistry , Drinking Water/analysis , Sulfonic Acids/analysis , Cysteine/analysis , Water Pollutants, Chemical/analysis , Mass Spectrometry , Halogenation
6.
Water Res ; 212: 118122, 2022 Apr 01.
Article in English | MEDLINE | ID: mdl-35101694

ABSTRACT

The antiozonant N-phenyl-N'-(1,3-dimethylbutyl)-p-phenylenediamine (6-PPD) is added to tires to increase their lifetime and is emitted with tire and road wear particles into the environment. Recently, one of its transformation products (TPs), 6-PPD quinone (6-PPDQ), has gained attention due to its toxicity towards coho salmon. In this study, the abiotic oxidative transformation of 6-PPD is investigated by a series of ozonation experiments in the lab followed by analysis of TPs using liquid chromatography-high resolution-mass spectrometry (LC-HRMS). A total of 38 TPs were detected and tentatively identified, which were formed either directly from 6-PPD or via 6-PPDQ as intermediate. A suspect screening by LC-HRMS showed 32 of these TPs to occur in snow collected from urban roads as surrogate of road-runoff, where 6-PPDQ, 4-aminodiphenylamine (4-ADPA), TP 213, and TP 249 were the most prominent besides 6-PPD. More than 90% of the total load of 6-PPD and its TPs was found in the particulate fraction of snow. Thus, retaining the particulate fraction of road runoff before its discharge into surface water would substantially reduce the emission of 6-PPD and many of its TPs. Some TPs prevailed in the water phase of the snow due to their higher polarity. A total of 13 TPs were detected by suspect screening in the dissolved phase of a wastewater treatment plant (WWTP) influent. Their total load was markedly enhanced during a day of snowmelt (approx. 1100 g/d) and rainfall (approx. 2000 g/d) compared to dry weather (approx. 190 g/d). 6-PPD and 6-PPDQ contributed to less than 1% to this total load in the water phase (estimated concentrations of max 0.1 µg/L). The elimination of the estimated total loads of 6-PPD related TPs from the water phase in WWTP ranged from 22 to 67% depending on weather conditions. Eventually TP 249, 4-ADPA and TP 259_2 dominated in WWTP effluent (estimated concentration from 0.5 up to 2 µg/L). Thus TP 249 and TP 259_2 are, likely, the most specific and stable TPs of 6-PPD to be determined in the environment.


Subject(s)
Wastewater , Water Pollutants, Chemical , Oxidative Stress , Phenylenediamines , Quinones , Snow , Wastewater/analysis , Water Pollutants, Chemical/analysis
7.
Aquat Toxicol ; 245: 106120, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35183844

ABSTRACT

Continuously increasing plastic production causes a constant accumulation of microplastic particles (MPs) in the aquatic environment, especially in industrialized and urbanized areas with elevated wastewater discharges. This coincides with the release of persistent organic pollutants (polycyclic aromatic hydrocarbons (PAHs), pesticides) entering limnic ecosystems. Although the assessment of potential effects of environmental pollutants sorbed to MPs under chronic exposure scenarios seems vital, data on potential hazards and risk by combined exposure to pollutants and microplastics for aquatic vertebrates is still limited. Therefore, zebrafish (Danio rerio) were exposed over 21 days to the organophosphate insecticide chlorpyrifos (CPF; 10 and 100 ng/L) and the PAH benzo(k)fluoranthene (BkF; 0.78 and 50 µg/L) either dissolved directly in water or sorbed to different MPs (irregular polystyrene, spherical polymethyl methacrylate; ≤ 100 µm), where CPF was sorbed to polystyrene MPs and BkF was sorbed to polymethyl methacrylate MPs. Contaminant sorption to MPs and leaching were documented using GC-EI-MS; potential accumulation was studied in cryosections of the gastrointestinal tract. Enzymatic biomarkers and biotransformation were measured in liver and brain. Overall, exposure to non-contaminated MPs did not induce any adverse effects. Results of fluorescence tracking, CYP1A modulation by BkF as well as changes in acetylcholinesterase activity (AChE) by CPF were less pronounced when contaminants were sorbed to MPs, indicating reduced bioavailability of pollutants. Overall, following exposure to waterborne BkF, only minor amounts of parent BkF and biotransformation products were detected in zebrafish liver. Even high loads of MPs and sorbed contaminants did not induce adverse effects in zebrafish; thus, the potential threat of MPs as vectors for contaminant transfer in limnic ecosystems can be considered limited.


Subject(s)
Chlorpyrifos , Water Pollutants, Chemical , Acetylcholinesterase/metabolism , Animals , Biomarkers/metabolism , Chlorpyrifos/metabolism , Chlorpyrifos/toxicity , Ecosystem , Fluorenes , Microplastics , Plastics , Water Pollutants, Chemical/toxicity , Zebrafish/metabolism
8.
Sci Total Environ ; 814: 152676, 2022 Mar 25.
Article in English | MEDLINE | ID: mdl-34973317

ABSTRACT

Parabens are widely used preservatives present in consumer products like cosmetics and food. Although several epidemiological studies suggest that early-life exposure to parabens might alter the immune response and allergy risk in childhood, the evidence with respect to asthma is not clear. Therefore, we investigated the effect of paraben exposure on asthma development in mice and humans. Using a murine asthma model the experimental data show both, an asthma-reducing effect after direct exposure of adult mice to n-butyl paraben (nBuP) as well as an asthma-promoting effect after maternal exposure to ethyl paraben (EtP) in the female offspring. Interestingly, exposure of mice to a mixture of EtP and nBuP starting prenatally until the end of asthma induction in the adult offspring was without effect on allergic airway inflammation. In addition, parabens were determined within the German prospective mother-child cohort LINA and their single and mixture effect on asthma development in children within the first 10 years of life was estimated by logistic and Bayesian kernel machine regression (BKMR). Both approaches revealed no adverse effects of parabens on children's asthma development, neither when stratified for being at risk due to a positive family history of atopy nor when analysed separately for sex specificity. Therefore, we conclude that although single parabens might differentially impact asthma development, an adverse effect could not be seen in a multiple paraben exposure setting. Consequently, not only the time point of exposure but also multiple exposure scenarios to parabens should be considered in the evaluation of individuals' specific disease risk.


Subject(s)
Asthma , Parabens , Animals , Asthma/chemically induced , Asthma/epidemiology , Bayes Theorem , Cohort Studies , Female , Mice , Parabens/toxicity , Prospective Studies
9.
Chem Res Toxicol ; 35(2): 315-325, 2022 02 21.
Article in English | MEDLINE | ID: mdl-34990119

ABSTRACT

Toxicokinetics (TK) of ionic compounds in the toxico-/pharmacological model zebrafish embryo (Danio rerio) depend on absorption, distribution, metabolism, and elimination (ADME) processes. Previous research indicated involvement of transport proteins in the TK of the anionic pesticide bromoxynil in zebrafish embryos. We here explored the interaction of bromoxynil with the organic anion-transporting polypeptide zebrafish Oatp1d1. Mass spectrometry imaging revealed accumulation of bromoxynil in the gastrointestinal tract of zebrafish embryos, a tissue known to express Oatp1d1. In contrast to the Oatp1d1 reference substrate bromosulfophthalein (BSP), which is actively taken up by transfected HEK293 cells overexpressing zebrafish Oatp1d1, those cells accumulated less bromoxynil than empty vector-transfected control cells. This indicates cellular efflux of bromoxynil by Oatp1d1. This was also seen for diclofenac but not for carbamazepine, examined for comparison. Correspondingly, internal concentrations of bromoxynil and diclofenac in the zebrafish embryo were increased when coexposed with BSP, inhibiting the activities of various transporter proteins, including Oatp1d1. The effect of BSP on accumulation of bromoxynil and diclofenac was enhanced in further advanced embryo stages, indicating increased efflux activity in those stages. An action of Oatp1d1 as an efflux transporter of ionic environmental compounds in zebrafish embryos should be considered in future TK assessments.


Subject(s)
Herbicides/metabolism , Nitriles/metabolism , Organic Anion Transporters/metabolism , Zebrafish Proteins/metabolism , Animals , HEK293 Cells , Humans , Molecular Structure , Nitriles/chemistry , Organic Anion Transporters/genetics , Zebrafish/embryology , Zebrafish Proteins/genetics
10.
Water Res ; 204: 117645, 2021 Oct 01.
Article in English | MEDLINE | ID: mdl-34547688

ABSTRACT

Persistent and mobile chemicals (PM chemicals) were searched for in surface waters by hydrophilic interaction liquid chromatography (HILIC) and supercritical fluid chromatography (SFC), both coupled to high resolution mass spectrometry (HRMS). A suspect screening was performed using a newly compiled list of 1310 potential PM chemicals to the data of 11 surface water samples from two river systems. In total, 64 compounds were identified by this approach. The overlap between HILIC- and SFC-HRMS was limited (31 compounds), confirming the complementarity of the two methods used. The identified PM candidates are characterized by a high polarity (median logD -0.4 at pH 7.5), a low molecular weight (median 187 g/mol), are mostly ionic (54 compounds) and contain a large number of heteroatoms (one per four carbons on average). Among the most frequently detected novel or yet scarcely investigated water contaminants were cyanoguanidine (11/11 samples), adamantan-1-amine (10/11), trifluoromethanesulfonate (9/11), 2-acrylamido-2-methylpropanesulfonate (10/11), and the inorganic anions hexafluorophosphate (11/11) and tetrafluoroborate (10/11). 31% of the identified suspects are mainly used in ionic liquids, a chemically diverse group of industrial chemicals with numerous applications that is so far rarely studied for their occurrence in the environment. Prioritization of the findings of PM candidates is hampered by the apparent lack of toxicity data. Hence, precautionary principles and minimization approaches should be applied for the risk assessment and risk management of these substances. The large share of novel water contaminants among these findings of the suspect screening indicates that the universe of PM chemicals present in the environment has so far only scarcely been explored. Dedicated analytical methods and screening lists appear essential to close the analytical gap for PM compounds.


Subject(s)
Chromatography, Supercritical Fluid , Chromatography, Liquid , Hydrophobic and Hydrophilic Interactions , Mass Spectrometry , Rivers
11.
Environ Sci Technol ; 55(17): 11723-11732, 2021 09 07.
Article in English | MEDLINE | ID: mdl-34488356

ABSTRACT

Tire and road wear particles (TRWPs) are one of the main sources of particulate traffic emissions, but measured data on TRWP contents in the environment are scarce. This study aims at identifying organic compounds suitable as quantitative markers for TRWPs by a tiered multistep selection process involving nontarget screening and subsequent identification by liquid-chromatography high-resolution mass spectrometry. Starting from several thousands of signals recorded in the extract of tire particles, the rigorous selection process considered source specificity, tendency of leaching, analytical sensitivity and precision, and stability during aging. It led to three transformation products of N-(1,3-dimethylbutyl)-N'-phenyl-p-phenylenediamine (6-PPD) as the most suitable marker candidates: N-formyl-6-PPD, hydroxylated N-1,3-dimethylbutyl-N-phenyl quinone diimine, and 6-PPD-quinone. A linear response in standard addition experiments with tire particles and the correlation with TRWP contents in a diverse set of environmental samples imply that these compounds are promising candidates as markers for the quantification of TRWPs. Organic markers for TRWP contents in the environment would allow TRWP quantification with the traditional tandem MS (LC-MS/MS) equipment of an organic trace analytical laboratory and, thus, allow easy generation of data on TRWP occurrence in sediments and soils and other environmental matrices.


Subject(s)
Soil , Tandem Mass Spectrometry , Chromatography, Liquid , Dust/analysis , Organic Chemicals
12.
Allergy ; 76(10): 3122-3132, 2021 10.
Article in English | MEDLINE | ID: mdl-33934374

ABSTRACT

BACKGROUND: Parabens, widely used as preservatives in cosmetics, foods, and other consumer products, are suspected of contributing to allergy susceptibility. The detection of parabens in the placenta or amniotic fluid raised concerns about potential health consequences for the child. Recently, an increased asthma risk following prenatal exposure has been reported. Here, we investigated whether prenatal paraben exposure can influence the risk for atopic dermatitis (AD). METHODS: 261 mother-child pairs of the German mother-child study LINA were included in this analysis. Eight paraben species were quantified in maternal urine obtained at gestational week 34. According to the parental report of physician-diagnosed AD from age 1 to 8 years, disease onset, and persistence, childhood AD was classified into four different phenotypes. RESULTS: 4.6% (n = 12) and 12.3% (n = 32) of the children were classified as having very early-onset AD (until age two) either with or without remission, 11.9% (n = 31) as early-onset (after age two), and 3.1% (n = 8) as childhood-onset AD (after age six). Exposure to ethylparaben and n-butylparaben was associated with an increased risk to develop very early-onset AD without remission (EtP: adj.OR/95% CI:1.44/1.04-2.00,nBuP:adj.OR/95% CI:1.95/1.22-3.12). The effects of both parabens were predominant in children without a history of maternal AD and independent of children's sex. CONCLUSION: Prenatal EtP or nBuP exposure may increase children's susceptibility for persistent AD with disease onset at very early age. This association was particularly pronounced in children without a history of maternal AD, indicating that children without a genetic predisposition are more susceptible to paraben exposure.


Subject(s)
Asthma , Dermatitis, Atopic , Eczema , Hypersensitivity , Child , Child, Preschool , Dermatitis, Atopic/diagnosis , Dermatitis, Atopic/epidemiology , Dermatitis, Atopic/etiology , Female , Humans , Infant , Parabens/adverse effects , Pregnancy
13.
Environ Pollut ; 283: 117096, 2021 Aug 15.
Article in English | MEDLINE | ID: mdl-33866217

ABSTRACT

Moxidectin is an antiparasitic drug belonging to the class of the macrocyclic lactones, subgroup mylbemicins. It is used worldwide in veterinary practice, but little is known about its potential environmental risks. Thus, we used the zebrafish embryo as a model system to study the potential effects of moxidectin on aquatic non-target organisms. The analyses were performed in two experimental sets: (1) acute toxicity and apical endpoints were characterized, with biomarker assays providing information on the activity levels of catalase (CAT), glutathione S-transferase (GST), lactate dehydrogenase (LDH), and acetylcholinesterase (AChE); and (2) internal concentration and spatial distribution of moxidectin were determined using ultraperformance liquid chromatography quadrupole-time-of-flight mass spectrometry (UPLC-QToF-MS) and matrix-assisted laser desorption/ionization-MS imaging (MALDI-MSi). The acute toxicity to zebrafish embryos (96 hpf) appeared mainly as a decrease in hatching rates (EC50 = 20.75 µg/L). It also altered the enzymatic activity of biomarker enzymes related to xenobiotic processing, anaerobic metabolism, and oxidative stress (GST, LDH, and CAT, respectively) and strongly accumulated in the embryos, as internal concentrations were 4 orders of magnitude higher than those detected in exposure solutions. MALDI-MSi revealed accumulations of the drug mainly in the head and eyes of the embryos (72 and 96 hpf). Thus, our results show that exposure to moxidectin decreases hatching success by 96 h and alters biochemical parameters in the early life stages of zebrafish while accumulating in the head and eye regions of the animals, demonstrating the need to prioritize this compound for environmental studies.


Subject(s)
Water Pollutants, Chemical , Zebrafish , Animals , Bioaccumulation , Biomarkers/metabolism , Embryo, Nonmammalian/metabolism , Macrolides , Oxidative Stress , Water Pollutants, Chemical/metabolism , Water Pollutants, Chemical/toxicity , Zebrafish/metabolism
14.
Chemosphere ; 279: 130530, 2021 Sep.
Article in English | MEDLINE | ID: mdl-33878695

ABSTRACT

Tire and road wear particles (TRWPs) are a major component of non-exhaust traffic emissions, but knowledge about their physico-chemical properties is limited. Road dust of a highway tunnel was fractionated by size and density, and fractions were analyzed for TRWPs, metals, seven tire tread indicator chemicals (benzothiazoles, 6-PPD and DPG) and effects in in-vitro bioassays. TRWP content in tunnel dust was very high (11-12%). The peak of the TRWP mass distribution was in the size fraction 20-50 µm, with 31-36% of the total TRWP mass and a content of up to 260 mg/g. The mass of organic tire constituents peaked in the smallest analyzed size fractions (<20 µm) with 35-55% of their total mass. They also peaked in the density fraction 1.3-1.7 g/cm³, indicating a lower TRWP density and a higher contribution of TP to TRWP (approx. 75%) than expected. Video-based shape analysis and SEM showed elongated particles, likely TRWPs, to be present in those size and density fractions ascribed to TRWPs by chemical analysis. But also irregular heteroagglomerates could be found. Solvent extracts of size and density fractions induced effects in bioassays indicative of the activation of the arylhydrocarbon receptor (AhR-CALUX) and the adaptive response to oxidative stress (AREc32). Similar comprehensive characterization of road dust from other sites may be needed to decide on whether TRWPs occurring in high concentrations in tunnel dust are suited as representative test materials for analytical purposes and TRWP fate studies.


Subject(s)
Dust , Environmental Monitoring , Dust/analysis , Particle Size
15.
Water Res ; 196: 117024, 2021 May 15.
Article in English | MEDLINE | ID: mdl-33756112

ABSTRACT

Ozonation is an important process to further reduce the trace organic chemicals (TrOCs) in treated municipal wastewater before discharge into surface waters, and is expected to form products that are more oxidized and more polar than their parent compounds. Many of these ozonation products (OPs) are biodegradable and thus removed by post-treatment (e.g., aldehydes). Most studies on OPs of TrOCs in wastewater rely on reversed-phase liquid chromatography- mass spectrometry (RPLC-MS), which is not suited for highly polar analytes. In this study, supercritical fluid chromatography combined with high resolution MS (SFC-HRMS) was applied in comparison to the generic RPLC-HRMS to search for OPs in ozonated wastewater treatment plant effluent at pilot-scale. While comparable results were obtained from these two techniques during suspect screenings for known OPs, a total of 23 OPs were only observed by SFC-HRMS via non-targeted screening. Several SFC-only OPs were proposed as the derivatives of methoxymethylmelamines, phenolic sulfates/sulfonates, and metformin; the latter was confirmed by laboratory-scale ozonation experiments. A complete ozonation pathway of metformin, a widespread and extremely hydrophilic TrOC in aquatic environment, was elaborated based on SFC-HRMS analysis. Five of the 10 metformin OPs are reported for the first time in this study. Three different dual-media filters were compared as post-treatments, and a combination of sand/anthracite and fresh post-granular activated carbon proved most effective in OPs removal due to the additional adsorption capacity. However, six SFC-only OPs, two of which originating from metformin, appeared to be persistent during all post-treatments, raising concerns on their occurrence in drinking water sources impacted by wastewater.


Subject(s)
Chromatography, Supercritical Fluid , Metformin , Ozone , Water Pollutants, Chemical , Water Purification , Mass Spectrometry , Organic Chemicals , Waste Disposal, Fluid , Wastewater , Water Pollutants, Chemical/analysis
16.
Environ Sci Technol ; 55(3): 1535-1544, 2021 02 02.
Article in English | MEDLINE | ID: mdl-33439633

ABSTRACT

The anticonvulsant drug lamotrigine is a recalcitrant environmental pollutant. It was detected in drinking water, surface water, reclaimed wastewater, arable soils, and even in edible crops. In this work, we studied the mechanisms of lamotrigine transformation by a common redox soil mineral, birnessite, in a single-solute system and in bisolute systems with vanillic acid or o-methoxyphenol. In the single-solute system, 28% of lamotrigine was transformed and 14 transformation products (TPs) were identified. Based on a detailed analysis of the TPs, we suggested that lamotrigine is transformed mainly by oxidation, addition, and dechlorination reactions. In the bisolute systems, the redox-active phenolic compounds enhanced the elimination and transformation of lamotrigine. Vanillic acid was more efficient, generating 92% transformation of lamotrigine (58 TPs were identified), whereas o-methoxyphenol induced 48% transformation (35 TPs were identified). In the bisolute system with phenolic compounds, lamotrigine has possibly been transformed mainly via addition reactions with phenolic compounds and their oxidation products (protocatechuic acid, quinone, and oligomers). Thus, masses of the formed TPs were elevated as compared to the parent compound. The current study demonstrates the important role of redox-active minerals and naturally occurring phenolic compounds in abiotic removal and transformation of a recalcitrant environmental pollutant.


Subject(s)
Anticonvulsants , Water Pollutants, Chemical , Lamotrigine , Minerals , Oxidation-Reduction , Wastewater , Water Pollutants, Chemical/analysis
17.
Water Res ; 185: 116262, 2020 Oct 15.
Article in English | MEDLINE | ID: mdl-32798890

ABSTRACT

Tire and road wear particles (TRWPs) are heteroagglomerates of tire rubber and other particles deposited on the road surface and one of the main contributors to non-exhaust emissions of automobile traffic. In this study, samples from road environments were analyzed for their TRWP contents and concentrations of eight organic tire constituents. TRWP concentrations were determined by quantifying Zn in the density fraction <1.9 g/cm³ and by thermal extraction desorption-gas chromatography-mass spectrometry (TED-GC/MS) and the concentrations ranged from 3.7 to 480 mg TRWP/g. Strong and statistically significant correlations with TRWPs were found for 2-hydroxybenzothiazole and 2-aminobenzothiazole, indicating that these substances may be suitable markers of TRWPs. The mass distribution of TRWPs in road dust suggests that the main mass fraction formed on roads consists of coarse particles (>100 µm). Data for a sedimentation basin indicate that the fine fraction (<50 µm) is preferentially transported by road runoff into receiving waters. The size distribution and density data of TRWP gathered by three different quantitation approaches also suggest that aging of TRWPs leads to changes in their particle density. An improved understanding of the dynamics of TRWP properties is essential to assess the distribution and dissipation of this contaminant of emerging concern in the environment.


Subject(s)
Dust , Environmental Monitoring , Dust/analysis , Gas Chromatography-Mass Spectrometry , Particle Size , Vehicle Emissions/analysis
18.
Environ Sci Technol ; 54(16): 10159-10169, 2020 08 18.
Article in English | MEDLINE | ID: mdl-32639148

ABSTRACT

The zebrafish embryo (Danio rerio) has developed into one of the most important nonsentient animal models for the hazard assessments of chemicals, but the processes governing its toxicokinetics (TK) are poorly understood. This study compares the uptake of seven test compounds into the embryonic body and the yolk sac of the zebrafish embryo using TK experiments, a dialysis approach, thermodynamic calculations, and kinetic modeling. Experimental data show that between 95% (4-iodophenol) and 67% (carbamazepine) of the total internal amount in 26 h post fertilization (hpf) embryos and between 80 and 49% in 74 hpf embryos were found in the yolk. Thus, internal concentrations determined for the whole embryo overestimate the internal concentration in the embryonic body: for the compounds of this study, up to a factor of 5. Partition coefficients for the embryonic body and a one-compartment model with diffusive exchange were calculated for the neutral test compounds and agreed reasonably with the experimental data. For prevalently ionic test compounds at exposure pH (bromoxynil, paroxetine), however, the extent and the speed of uptake were low and could not be modeled adequately. A better understanding of the TK of ionizable test compounds is essential to allow assessment of the validity of this organismic test system for ionic test compounds.


Subject(s)
Water Pollutants, Chemical , Zebrafish , Animals , Embryo, Nonmammalian/metabolism , Renal Dialysis , Toxicokinetics , Water Pollutants, Chemical/metabolism , Water Pollutants, Chemical/toxicity , Yolk Sac
19.
Anal Bioanal Chem ; 412(20): 4909-4919, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32382968

ABSTRACT

A variant of suspect screening by liquid chromatography-high-resolution mass spectrometry (LC-HRMS) is proposed in this study: Samples of a potential source of contamination and of an environmental sample close to this source are first analyzed in a non-targeted manner to select source-related suspects and to identify them. The suspect list compiled from such an exercise is then applied to LC-HRMS data of environmental samples to ascribe and to identify persistent and mobile contaminants in the water cycle that may originate from the source under study. This approach was applied to tire crumb rubber (source) and road dust (close to source); by comparison of the two data sets, 88% of the features detected in tire leachate could be excluded. Of the 48 suspects remaining, a total of 41 could be tentatively identified as either related to hexamethoxymethyl melamine or cyclic amines, benzothiazoles, or glycols. Subsequently, environmental samples were searched for these suspects: 85% were determined in an urban creek after a combined sewer overflow and 67% in the influent of a municipal wastewater treatment plant (WWTP). These exceptionally high rates of positive findings prove that this source-related smart suspect screening effectively directs the effort of selecting and identifying unknown contaminants to those related to the source of interest. The WWTP effluent and the urban creek during dry weather also showed the presence of numerous contaminants that may stem from tire and road wear particles (TRWP) in road runoff. Contribution from other sources, however, cannot be ruled out. Graphical abstract.

20.
J Hazard Mater ; 393: 122470, 2020 07 05.
Article in English | MEDLINE | ID: mdl-32208331

ABSTRACT

Two injectable reactive and sorption-active particle types were evaluated for their applicability in permeable reaction zones for in-situ removal of herbicides ("nanoremediation"). As model substances, atrazine and bromacil were used, two herbicides frequently occurring in groundwater. In order to provide recommendations for best use, particle performance was assessed regarding herbicide degradation and detoxification. For chemical reduction, Carbo-Iron® was studied, a composite material consisting of zerovalent iron and colloidal activated carbon. Carbo-Iron reduced bromacil with increased activity compared to nanoscale zerovalent iron (nZVI). The sole reaction product, 3-sec-butyl-6-methyluracil, showed 500-fold increase in half-maximal-effect concentration (EC50) towards the chlorophyte Scendesmus vacuolatus compared to the parent compound. The detoxification based on dehalogenation confirmed the dependency of the specific mode-of-action on the carbon-halide bond. For atrazine, neither nZVI nor Carbo-Iron showed significant degradation under the conditions applied. As novel subsurface treatment option, Trap-Ox® zeolite FeBEA35 was studied for generation of in-situ permeable oxidation barriers. Both adsorbed atrazine and bromacil underwent fast unselective oxidation. The transformation products of the Fenton-like reaction were identified, and oxidation pathways derived. For atrazine, a 300-fold increase in EC50 for S. vacuolatus was found over the duration of the reaction, and a loss of phytotoxicity to non-detectable levels for bromacil.


Subject(s)
Atrazine/chemistry , Bromouracil/analogs & derivatives , Carbon/chemistry , Herbicides/chemistry , Iron/chemistry , Nanoparticles/chemistry , Water Pollutants, Chemical/chemistry , Zeolites/chemistry , Adsorption , Atrazine/toxicity , Bromouracil/chemistry , Bromouracil/toxicity , Environmental Restoration and Remediation , Feasibility Studies , Groundwater/chemistry , Herbicides/toxicity , Oxidation-Reduction , Scenedesmus/growth & development , Water Pollutants, Chemical/toxicity
SELECTION OF CITATIONS
SEARCH DETAIL
...