Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Language
Publication year range
1.
Science ; 379(6630): eabp8622, 2023 01 27.
Article in English | MEDLINE | ID: mdl-36701452

ABSTRACT

Approximately 2.5 × 106 square kilometers of the Amazon forest are currently degraded by fire, edge effects, timber extraction, and/or extreme drought, representing 38% of all remaining forests in the region. Carbon emissions from this degradation total up to 0.2 petagrams of carbon per year (Pg C year-1), which is equivalent to, if not greater than, the emissions from Amazon deforestation (0.06 to 0.21 Pg C year-1). Amazon forest degradation can reduce dry-season evapotranspiration by up to 34% and cause as much biodiversity loss as deforestation in human-modified landscapes, generating uneven socioeconomic burdens, mainly to forest dwellers. Projections indicate that degradation will remain a dominant source of carbon emissions independent of deforestation rates. Policies to tackle degradation should be integrated with efforts to curb deforestation and complemented with innovative measures addressing the disturbances that degrade the Amazon forest.


Subject(s)
Carbon , Conservation of Natural Resources , Rainforest , Biodiversity , Carbon Cycle , Brazil
2.
Biodivers Conserv ; 30(11): 3299-3303, 2021.
Article in English | MEDLINE | ID: mdl-34230776

ABSTRACT

The Pantanal faced an unprecedented drought event in 2020. The hydrological year ended in July, 2020 had an annual average rainfall 26 % lower than the average from 1982 to 2020. Consequently, catastrophic wildfires burned out of control. Active fires during this year have also increased, and were 123 % higher than the 2002-2020 Pantanal's average. Approximately 95 % of these active fires occurred in natural land covers with 28 % of them occurring in areas classified as wetlands that likely dried out due to the drought. Therefore, the development of a special policy is needed to minimize the impact of this crisis on the biodiversity, conservation, and traditional people of the Pantanal.

3.
Ciênc. rural (Online) ; 50(3): e20190587, 2020. tab, graf
Article in English | LILACS-Express | LILACS | ID: biblio-1089562

ABSTRACT

ABSTRACT: Vis-NIR-SWIR reflectance spectra of leaf samples, collected in the laboratory, allow the calibration of predictive models to quantify their physicochemical attributes in a practical manner and without producing chemical residues. This technique should enable the development of management strategies for intensification of pasture use. However, spectral analysis performed in the laboratory may be affected by the deterioration of plant material during transport from the field to the lab, so storage methods are necessary. This research aimed to evaluate the effects of different storage methods on the spectral response of Mombasa grass leaves. Three methods were evaluated: (i) artificially refrigerated environment, (ii) humid environment, and (iii) without microenvironment control. These methods were tested in five different storage times: 2 hours, 4 hours, 8 hours, 24 hours and 48 hours. The spectral behavior of the leaves still inserted in the plant was used as a quality reference. Results showed notable changes at the earliest storage time for the treatment without microenvironment control. Both methods with microenvironment control stabilized the occurrence of spectral changes over 48 hours of the samples storage, thus both were suggested for this species.


RESUMO: Espectros de reflectância vis-NIR-SWIR de amostras foliares, coletados em laboratório, permitem a calibração de modelos preditivos para quantificação de seus atributos físico-químicos de maneira prática e sem produção de resíduos químicos. Esta técnica permite o desenvolvimento de estratégias de manejo para a intensificação do uso de pastagens. Contudo, análises espectrais realizadas em laboratório podem ser afetadas pela deterioração do material vegetal durante o transporte do campo ao laboratório, fazendo-se necessário a utilização de métodos de armazenamento. O presente trabalho objetivou avaliar o efeito de diferentes métodos de armazenamento na resposta espectral de folhas de capim Mombaça. Avaliou-se três métodos: (i) ambiente refrigerado artificialmente; (ii) ambiente úmido; e (iii) ao ar livre, sem controle do microambiente; assim como, cinco diferentes tempos de armazenamento: 2 horas, 4 horas, 8 horas, 24 horas e 48 horas. O comportamento espectral das folhas ainda inseridas na planta foi utilizado como referência de qualidade. Os resultados mostraram alterações pronunciadas para o armazenamento ao ar livre já nos primeiros intervalos de tempo. Ambos métodos com controle de microambiente permitiram estabilizar a ocorrência de alterações espectrais ao longo das 48h de armazenamento das amostras, sendo ambos sugeridos para esta espécie.

SELECTION OF CITATIONS
SEARCH DETAIL
...