Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Bioresour Technol ; 369: 128396, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36503832

ABSTRACT

Pretreatment processes - recognized as critical steps for efficient biomass refining - have received much attention over the last two decades. In this context, deep eutectic solvents (DES) have emerged as a novel alternative to conventional solvents representing a step forward in achieving more sustainable processes with both environmental and economic benefits. This paper presents an updated review of the state-of-the-art of DES-based applications in biorefinery schemes. Besides describing the fundamentals of DES composition, synthesis, and recycling, this study presents a comprehensive review of existing techno-economic and life cycle assessment studies. Challenges, barriers, and perspectives for the scale-up of DES-based processes are also discussed.


Subject(s)
Deep Eutectic Solvents , Lignin , Biomass , Solvents , Recycling
2.
Pharmaceutics ; 11(2)2019 Feb 01.
Article in English | MEDLINE | ID: mdl-30717083

ABSTRACT

Herein, a new Ugi multicomponent reaction strategy is described to enhance activity and solubility of the chemotherapeutic drug chlorambucil through its conjugation to poly(amidoamine) (PAMAM-NH2) dendrimers with the simultaneous introduction of lipidic (i-Pr) and cationic (⁻NH2) or anionic (⁻COOH) groups. Standard viability assays were used to evaluate the anticancer potential of the water-soluble dendrimers against PC-3 prostate and HT-29 colon cancer cell lines, as well as non-cancerous mouse NIH3T3 fibroblasts. It could be demonstrated that the anticancer activity against PC-3 cells was considerably improved when both chlorambucil and ⁻NH2 (cationic) groups were present on the dendrimer surface (1b). Additionally, this dendrimer showed activity only against the prostate cancer cells (PC-3), while it did not affect colon cancer cells and fibroblasts significantly. The cationic chlorambucil-dendrimer 1b blocks PC-3 cells in the G2/M phase and induces caspase independent apoptosis.

3.
Chemistry ; 24(39): 9788-9793, 2018 Jul 11.
Article in English | MEDLINE | ID: mdl-29882608

ABSTRACT

Aiming at providing an efficient and versatile method for the diversity-oriented decoration and ligation of fullerenes, we report the first C60 derivatization strategy based on isocyanide-multicomponent reactions (I-MCRs). The approach comprises the use of Passerini and Ugi reactions for assembling pseudo-peptidic scaffolds (i.e., N-alkylated and depsipeptides, peptoids) on carboxylic acid-functionalized fullerenes. The method showed wide substrate scope for the oxo and isocyanide components, albeit the Ugi reaction proved efficient only for aromatic amines. The approach was successfully employed for the ligation of oligopeptides and polyethyleneglycol chains (PEG) to C60 , as well as for the construction of bis-antennary as well as PEG-tethered dimeric fullerenes. The quantum yields for the formation of 1 O2 was remarkable for the selected compounds analyzed.

4.
Polymers (Basel) ; 10(10)2018 Sep 21.
Article in English | MEDLINE | ID: mdl-30960980

ABSTRACT

Polysaccharide-based microgels have broad applications in multi-parametric cell cultures, cell-free biotechnology, and drug delivery. Multicomponent reactions like the Passerini three-component and the Ugi four-component reaction are shown in here to be versatile platforms for fabricating these polysaccharide microgels by droplet microfluidics with a narrow size distribution. While conventional microgel formation requires pre-modification of hydrogel building blocks to introduce certain functionality, in multicomponent reactions one building block can be simply exchanged by another to introduce and extend functionality in a library-like fashion. Beyond synthesizing a range of polysaccharide-based microgels utilizing hyaluronic acid, alginate and chitosan, exemplary in-depth analysis of hyaluronic acid-based Ugi four-component gels is conducted by colloidal probe atomic force microscopy, confocal Brillouin microscopy, quantitative phase imaging, and fluorescence correlation spectroscopy to elucidate the capability of microfluidic multicomponent reactions for forming defined polysaccharide microgel networks. Particularly, the impact of crosslinker amount and length is studied. A higher network density leads to higher Young's moduli accompanied by smaller pore sizes with lower diffusion coefficients of tracer molecules in the highly homogeneous network, and vice versa. Moreover, tailored building blocks allow for crosslinking the microgels and incorporating functional groups at the same time as demonstrated for biotin-functionalized, chitosan-based microgels formed by Ugi four-component reaction. To these microgels, streptavidin-labeled enzymes are easily conjugated as shown for horseradish peroxidase (HRP), which retains its activity inside the microgels.

SELECTION OF CITATIONS
SEARCH DETAIL
...