Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Photochem Photobiol ; 89(6): 1471-8, 2013.
Article in English | MEDLINE | ID: mdl-23865822

ABSTRACT

We have studied the effect of head group and alkyl chain length on ß-phase formation in poly(9,9-dioctylfluorene) (PFO) solubilized in phospholipid liposomes. Systems studied have three different alkyl chain lengths (1,2-dimyristoyl-sn-glycero-3-phosphatidylcholine [DMPC], 1,2-didodecanoyl-sn-glycero-3-phosphatidylcholine [DLPC], 1,2-dipalmitoyl-sn-glycero-3-phosphatidylcholine [DPPC]) and head groups (1,2-dimyristoyl-sn-glycero-3-phosphate monosodium salt [DMPA], 1,2-dimyristoyl-sn-glycero-3-phosphoethanolamine [DMPE] and 1,2-dimyristoyl-sn-glycero-3-phospho-l-serine sodium salt [DMPS]). Changes in liposome size upon addition of PFO are followed by dynamic light scattering. All the phospholipids induce the formation of PFO ß-phase, which is followed by the emission intensity and deconvolution of the absorption spectra. Both the head group and alkyl chain length affect the yield of ß-phase. The photophysics of PFO incorporated in liposomes is characterized by stationary and time-resolved fluorescence, whereas the polymer-phospholipid interactions have been studied by the effect of the PFO concentration on the phospholipid phase transitions (differential scanning calorimetry [DSC]).


Subject(s)
Liposomes , Phospholipids/chemistry
2.
J Fluoresc ; 18(5): 961-72, 2008 Sep.
Article in English | MEDLINE | ID: mdl-18470601

ABSTRACT

Interaction between beta-carboline-3-carboxylic acid N-methylamide, betaCMAM, and nucleobases, nucleosides and nucleotides is studied in the ground state with UV-visible, (1)H NMR and (31)P NMR spectroscopies and in the first excited state, with steady-state and time-resolved fluorescence spectroscopy. Job plots show a predominant 1:1 interaction in both electronic states. Association constants are estimated from changes in the absorption spectra, and show that the strongest interaction is produced with the nucleosides: 2'-deoxyadenosine (dAdo) and thymidine (Thd), and with the mononucleotides: 2'-deoxycytidine 5'- monophosphate (5'-dCMP) and uridine 5'- monophosphate (5'-UMP). These results are corroborated by the upfield shifts of two (1)H NMR resonances of the betaCMAM indole group. The (31)P NMR resonance of nucleotides is shifted downfield, suggesting the presence of electrostatic or hydrogen bond interaction with betaCMAM. In the first electronic singlet excited state, static and dynamic quenching of betaCMAM emission is achieved upon addition of nucleobases, nucleosides and nucleotides. This has been analysed using Stern-Volmer kinetics.


Subject(s)
Carbolines/chemistry , DNA/chemistry , Nucleosides/chemistry , Nucleotides/chemistry , Spectrum Analysis/methods , Molecular Structure , Nuclear Magnetic Resonance, Biomolecular , Spectrometry, Fluorescence , Spectrophotometry, Ultraviolet
SELECTION OF CITATIONS
SEARCH DETAIL
...