Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Biosens Bioelectron ; 231: 115300, 2023 Jul 01.
Article in English | MEDLINE | ID: mdl-37058961

ABSTRACT

Plant stress responses involve a suite of genetically encoded mechanisms triggered by real-time interactions with their surrounding environment. Although sophisticated regulatory networks maintain proper homeostasis to prevent damage, the tolerance thresholds to these stresses vary significantly among organisms. Current plant phenotyping techniques and observables must be better suited to characterize the real-time metabolic response to stresses. This impedes practical agronomic intervention to avoid irreversible damage and limits our ability to breed improved plant organisms. Here, we introduce a sensitive, wearable electrochemical glucose-selective sensing platform that addresses these problems. Glucose is a primary plant metabolite, a source of energy produced during photosynthesis, and a critical molecular modulator of various cellular processes ranging from germination to senescence. The wearable-like technology integrates a reverse iontophoresis glucose extraction capability with an enzymatic glucose biosensor that offers a sensitivity of 22.7 nA/(µM·cm2), a limit of detection (LOD) of 9.4 µM, and a limit of quantification (LOQ) of 28.5 µM. The system's performance was validated by subjecting three different plant models (sweet pepper, gerbera, and romaine lettuce) to low-light and low-high temperature stresses and demonstrating critical differential physiological responses associated with their glucose metabolism. This technology enables non-invasive, non-destructive, real-time, in-situ, and in-vivo identification of early stress response in plants and provides a unique tool for timely agronomic management of crops and improving breeding strategies based on the dynamics of genome-metabolome-phenome relationships.


Subject(s)
Biosensing Techniques , Biosensing Techniques/methods , Crops, Agricultural , Glucose/metabolism , Photosynthesis , Agriculture , Stress, Physiological
2.
Talanta ; 254: 124122, 2023 Mar 01.
Article in English | MEDLINE | ID: mdl-36459870

ABSTRACT

The development of a non-invasive sensing technology that allows collection of interstitial fluid (ISF) lactate and its subsequent analysis without exertion requirement, could enable lactate monitoring from rested individuals. Here, we describe a wearable, soft epidermal adhesive patch that integrates a reverse iontophoretic (RI) system, and an amperometric lactate biosensor placed on the anodic electrode with a porous hydrogel reservoir, for simultaneous ISF lactate extraction and quantification via electrochemical sensing, respectively. The iontophoretic system includes agarose hydrogels for preventing skin electrocution, while a porous polyvinyl alcohol-based hydrogel facilitates the effective transport of lactate from skin to the biosensor. The flexible skin-worn device tested on healthy individuals at rest showed rapid lactate collection from the ISF after 10 min of reverse iontophoresis with no evidence of discomfort or irritation to the skin. Detailed characterization of the enzymatic biosensor before and during on-body trials along with relevant control experiments confirmed the efficient extraction and selective detection of ISF lactate. Such an epidermal technology represents the first demonstration of an all-in-one platform that integrates non-invasive collection and subsequent analysis of lactate from iontophoretically extracted ISF toward point-of-care operation.


Subject(s)
Biosensing Techniques , Lactic Acid , Humans , Lactic Acid/analysis , Iontophoresis , Extracellular Fluid/chemistry , Epidermis/chemistry , Hydrogels
3.
ACS Sens ; 7(12): 3973-3981, 2022 12 23.
Article in English | MEDLINE | ID: mdl-36512725

ABSTRACT

ß-Hydroxybutyrate (HB) is one of the main physiological ketone bodies that play key roles in human health and wellness. Besides their important role in diabetes ketoacidosis, ketone bodies are currently receiving tremendous attention for personal nutrition in connection to the growing popularity of oral ketone supplements. Accordingly, there are urgent needs for developing a rapid, simple, and low-cost device for frequent onsite measurements of ß-hydroxybutyrate (HB), one of the main physiological ketone bodies. However, real-time profiling of dynamically changing HB concentrations is challenging and still limited to laboratory settings or to painful and invasive measurements (e.g., a commercial blood ketone meter). Herein, we address the critical need for pain-free frequent HB measurements in decentralized settings and report on a reliable noninvasive, simple, and rapid touch-based sweat HB testing and on its ability to track dynamic HB changes in secreted fingertip sweat, following the intake of commercial ketone supplements. The new touch-based HB detection method relies on an instantaneous collection of the fingertip sweat at rest on a porous poly(vinyl alcohol) (PVA) hydrogel that transports the sweat to a biocatalytic layer, composed of the ß-hydroxybutyrate dehydrogenase (HBD) enzyme and its nicotinamide adenine dinucleotide (NAD+) cofactor, covering the modified screen-printed carbon working electrode. As a result, the sweat HB can be measured rapidly by the mediated oxidation reaction of the nicotinamide adenine dinucleotide (NADH) product. A personalized HB dose-response relationship is demonstrated within a group of healthy human subjects taking commercial ketone supplements, along with a correlation between the sweat and capillary blood HB levels. Furthermore, a dual disposable biosensing device, consisting of neighboring ketone and glucose enzyme electrodes on a single-strip substrate, has been developed toward the simultaneous touch-based detection of dynamically changing sweat HB and glucose levels, following the intake of ketone and glucose drinks.


Subject(s)
Glucose , Ketone Bodies , Humans , Ketone Bodies/analysis , Glucose/analysis , 3-Hydroxybutyric Acid , Touch , NAD , Self-Testing , Sweat/chemistry , Ketones
SELECTION OF CITATIONS
SEARCH DETAIL
...