Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
2.
J Phys Condens Matter ; 33(36)2021 Jul 09.
Article in English | MEDLINE | ID: mdl-34167093

ABSTRACT

Near itinerant cubic bulk CoV2O4is at variance with other spinel vanadates by not showing orbital ordering down to low temperature, albeit it displays fragile anomalies related to spin, and lattice structure, signaling a spin/orbital glass transition around 95 K. We investigate tetragonal-like epitaxial CoV2O4films on SrTiO3and (La0.3Sr0.7)(Al0.65Ta0.35)O3substrates that exhibit pronounced signature of spin reorientation transition from toa/bplane around 90 K unlike its bulk counterpart. Using in-plane and out-of-plane magnetic measurements, we demonstrate the intricate link between Co2+and V3+sublattice magnetizations that give rise to anisotropic magnetic switching. In-plane magnetic measurements reveal a wasp-waist shapedM(H) loop below reorientation transition temperature, while the out-of-plane follows antiferromagnet-likeM(H) response. The wasp-waist shaped feature could be linked to in-plane spin-canted (anti)ferromagnetism induced by canting away of V-spins away from antiferromagnetically coupled Co-spin direction below reorientation transition temperature. Further, we uncover the evidence for slow relaxation over a period of ∼104 s at 20 K and memory effect that indicates the possible existence for magnetic glassy phase in the low temperature regime. Using epitaxial strain as a control knob, our results inspire future study to manipulate orbital states, spin texture and itinerant electron character in tailored CoV2O4films away from cubic lattice symmetry.

3.
Sci Rep ; 7(1): 4567, 2017 07 04.
Article in English | MEDLINE | ID: mdl-28676658

ABSTRACT

We present our angle resolved photoelectron spectroscopy (ARPES) and density functional theory results on quaternary topological insulator (TI) BiSbTe1.25Se1.75 (BSTS) confirming the non-trivial topology of the surface state bands (SSBs) in this compound. We find that the SSBs, which are are sensitive to the atomic composition of the terminating surface have a partial 3D character. Our detailed study of the band bending (BB) effects shows that in BSTS the Dirac point (DP) shifts by more than two times compared to that in Bi2Se3 to reach the saturation. The stronger BB in BSTS could be due to the difference in screening of the surface charges. From momentum density curves (MDCs) of the ARPES data we obtained an energy dispersion relation showing the warping strength of the Fermi surface in BSTS to be intermediate between those found in Bi2Se3 and Bi2Te3 and also to be tunable by controlling the ratio of chalcogen/pnictogen atoms. Our experiments also reveal that the nature of the BB effects are highly sensitive to the exposure of the fresh surface to various gas species. These findings have important implications in the tuning of DP in TIs for technological applications.

4.
J Phys Condens Matter ; 26(42): 425501, 2014 Oct 22.
Article in English | MEDLINE | ID: mdl-25273901

ABSTRACT

Our valence band photoelectron spectroscopic studies show a temperature dependent spectral weight transfer near the Fermi level in the Fe-based superconductor FeSe1-xTex. Using theoretical band structure calculations we have shown that the weight transfer is due to the temperature induced changes in the Fe(Se,Te)4 tetrahedra. These structural changes lead to shifts in the electron occupancy from the xz/yz and x2-y2 orbitals to the 3z2-r2 orbitals indicating a temperature induced crossover from a metallic state to an Orbital Selective Mott (OSM) Phase. Our study presents an observation of a temperature induced crossover to a low temperature OSM phase in the family of Fe chalcogenides.

SELECTION OF CITATIONS
SEARCH DETAIL
...