Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 52
Filter
1.
EBioMedicine ; 91: 104589, 2023 May.
Article in English | MEDLINE | ID: mdl-37119734

ABSTRACT

BACKGROUND: Defining the presence of acute and chronic brain inflammation remains a challenge to clinicians due to the heterogeneity of clinical presentations and aetiologies. However, defining the presence of neuroinflammation, and monitoring the effects of therapy is important given its reversible and potentially damaging nature. We investigated the utility of CSF metabolites in the diagnosis of primary neuroinflammatory disorders such as encephalitis and explored the potential pathogenic role of inflammation in epilepsy. METHODS: Cerebrospinal fluid (CSF) collected from 341 paediatric patients (169 males, median age 5.8 years, range 0.1-17.1) were examined. The patients were separated into a primary inflammatory disorder group (n = 90) and epilepsy group (n = 80), who were compared with three control groups including neurogenetic and structural (n = 76), neurodevelopmental disorders, psychiatric and functional neurological disorders (n = 63), and headache (n = 32). FINDINGS: There were statistically significant increases of CSF neopterin, kynurenine, quinolinic acid and kynurenine/tryptophan ratio (KYN/TRP) in the inflammation group compared to all control groups (all p < 0.0003). As biomarkers, at thresholds with 95% specificity, CSF neopterin had the best sensitivity for defining neuroinflammation (82%, CI 73-89), then quinolinic acid (57%, CI 47-67), KYN/TRP ratio (47%, CI 36-56) and kynurenine (37%, CI 28-48). CSF pleocytosis had sensitivity of 53%, CI 42-64). The area under the receiver operating characteristic curve (ROC AUC) of CSF neopterin (94.4% CI 91.0-97.7%) was superior to that of CSF pleocytosis (84.9% CI 79.5-90.4%) (p = 0.005). CSF kynurenic acid/kynurenine ratio (KYNA/KYN) was statistically decreased in the epilepsy group compared to all control groups (all p ≤ 0.0003), which was evident in most epilepsy subgroups. INTERPRETATION: Here we show that CSF neopterin, kynurenine, quinolinic acid and KYN/TRP are useful diagnostic and monitoring biomarkers of neuroinflammation. These findings provide biological insights into the role of inflammatory metabolism in neurological disorders and provide diagnostic and therapeutic opportunities for improved management of neurological diseases. FUNDING: Financial support for the study was granted by Dale NHMRC Investigator grant APP1193648, University of Sydney, Petre Foundation, Cerebral Palsy Alliance and Department of Biochemistry at the Children's Hospital at Westmead. Prof Guillemin is funded by NHMRC Investigator grant APP 1176660 and Macquarie University.


Subject(s)
Nervous System Diseases , Tryptophan , Male , Humans , Child , Infant , Child, Preschool , Adolescent , Tryptophan/metabolism , Kynurenine , Neopterin/metabolism , Quinolinic Acid/cerebrospinal fluid , Neuroinflammatory Diseases , Leukocytosis , Inflammation/diagnosis , Inflammation/metabolism , Biomarkers/metabolism
2.
Dev Med Child Neurol ; 65(1): 126-135, 2023 01.
Article in English | MEDLINE | ID: mdl-35661998

ABSTRACT

AIM: To improve delivery of acute therapies for acute ischaemic stroke (AIS). METHOD: We identified factors influencing the speed of diagnosis and delivery of acute therapies in a prospective cohort of 21 children with suspected AIS (eight with AIS, 13 stroke mimics) and explored them in a retrospective cohort with confirmed AIS. RESULTS: Approximately half of the prospective and total AIS cohorts presented with acute, sustained hemiparesis, and were diagnosed relatively quickly. AIS was suspected and diagnosed more slowly in the half presenting with symptoms other than sustained hemiparesis. Thirty-one out of 51 patients with AIS (19 females, 32 males, mean age 8 years 6 months, SD 5 years 4 months) had arterial abnormalities identified by computed tomography angiography (CTA) or magnetic resonance angiography (MRA): 11 with large vessel occlusion, six with dissection, five with moyamoya disease, nine with other arteriopathies. Among these patients, those initially imaged with CTA were diagnosed more quickly than those with initial magnetic resonance imaging/angiography, which facilitated thrombectomy and thrombolytic therapy. Twenty out of 51 had AIS without arterial abnormalities on CTA or MRA: eight with lenticulostriate vasculopathy and 12 with other small-vessel AIS. Among these patients, 80% were ineligible for thrombolysis for reasons beyond delay to diagnosis, and all showed good outcomes with supportive treatments alone. INTERPRETATION: Clinical features at presentation influence rapidity with which childhood AIS is suspected and diagnosed. Readily available CTA can direct thrombectomy in patients with large vessel occlusion and thrombolysis in most, but not all, eligible patients. WHAT THIS PAPER ADDS: Children with acute ischaemic stroke (AIS) commonly present with symptoms other than sustained hemiparesis. Stroke is more slowly recognized in these patients, which limits potential therapies. Computed tomography angiography (CTA) accurately identifies AIS with large vessel occlusion, enabling timely endovascular thrombectomy. CTA is sufficient to direct thrombolytic therapy in most eligible children. Most childhood AIS without arterial abnormalities identified by CTA had good outcomes.


Subject(s)
Brain Ischemia , Ischemic Stroke , Stroke , Male , Female , Humans , Child , Stroke/diagnostic imaging , Stroke/therapy , Brain Ischemia/diagnostic imaging , Brain Ischemia/therapy , Computed Tomography Angiography , Retrospective Studies , Prospective Studies , Magnetic Resonance Angiography , Paresis
3.
Environ Sci Technol ; 56(2): 1125-1137, 2022 01 18.
Article in English | MEDLINE | ID: mdl-34985868

ABSTRACT

Some infectious diseases, including COVID-19, can undergo airborne transmission. This may happen at close proximity, but as time indoors increases, infections can occur in shared room air despite distancing. We propose two indicators of infection risk for this situation, that is, relative risk parameter (Hr) and risk parameter (H). They combine the key factors that control airborne disease transmission indoors: virus-containing aerosol generation rate, breathing flow rate, masking and its quality, ventilation and aerosol-removal rates, number of occupants, and duration of exposure. COVID-19 outbreaks show a clear trend that is consistent with airborne infection and enable recommendations to minimize transmission risk. Transmission in typical prepandemic indoor spaces is highly sensitive to mitigation efforts. Previous outbreaks of measles, influenza, and tuberculosis were also assessed. Measles outbreaks occur at much lower risk parameter values than COVID-19, while tuberculosis outbreaks are observed at higher risk parameter values. Because both diseases are accepted as airborne, the fact that COVID-19 is less contagious than measles does not rule out airborne transmission. It is important that future outbreak reports include information on masking, ventilation and aerosol-removal rates, number of occupants, and duration of exposure, to investigate airborne transmission.


Subject(s)
Air Pollution, Indoor , COVID-19 , Aerosols , Disease Outbreaks , Humans , SARS-CoV-2 , Ventilation
4.
Small ; 18(2): e2105076, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34799991

ABSTRACT

Effects of electronic and atomic structures of V-doped 2D layered SnS2 are studied using X-ray spectroscopy for the development of photocatalytic/photovoltaic applications. Extended X-ray absorption fine structure measurements at V K-edge reveal the presence of VO and VS bonds which form the intercalation of tetrahedral OVS sites in the van der Waals (vdW) gap of SnS2 layers. X-ray absorption near-edge structure (XANES) reveals not only valence state of V dopant in SnS2 is ≈4+ but also the charge transfer (CT) from V to ligands, supported by V Lα,ß resonant inelastic X-ray scattering. These results suggest V doping produces extra interlayer covalent interactions and additional conducting channels, which increase the electronic conductivity and CT. This gives rapid transport of photo-excited electrons and effective carrier separation in layered SnS2 . Additionally, valence-band photoemission spectra and S K-edge XANES indicate that the density of states near/at valence-band maximum is shifted to lower binding energy in V-doped SnS2 compare to pristine SnS2 and exhibits band gap shrinkage. These findings support first-principles density functional theory calculations of the interstitially tetrahedral OVS site intercalated in the vdW gap, highlighting the CT from V to ligands in V-doped SnS2 .

5.
Ind Psychiatry J ; 30(1): 123-130, 2021.
Article in English | MEDLINE | ID: mdl-34483536

ABSTRACT

INTRODUCTION: Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 has engulfed the globe since December 2019. Healthcare workers remain at the forefront of this battle, and like prior pandemics face mental health challenges along with physical risks. We aimed to study the perceived stress and possible posttraumatic stress in the frontline workers exposed to active COVID-19 duties in the state of Andhra Pradesh, India. METHODOLOGY: A special voluntary, anonymous, survey-based Google questionnaire was designed with mandatory consent form and queries to clarify inclusion exclusion criteria. Tools included valid, reliable self-administered scales, namely General Health Questionnaire 12, Perceived Stress Scale and Impact of Events Scales-Revised. A purposive sampling method was adopted, by posting the survey questionnaire on WhatsApp groups of doctors, interns, and nurses working on active COVID-19 duty in Andhra Pradesh. RESULTS: About 69.7% of the frontline workers recorded higher perceived stress and definitive posttraumatic stress disorder (PTSD) was found in 34.8%, with psychological distress recorded in 53%. CONCLUSION: The higher levels of perceived stress discovered in the vast majority with definitive PTSD features in a third of the sample indicates the need for provision of mental health support proactively among frontline workers on active COVID-19 duty.

6.
J Hosp Infect ; 110: 89-96, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33453351

ABSTRACT

The coronavirus disease 2019 (COVID-19) pandemic has caused untold disruption throughout the world. Understanding the mechanisms for transmission of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) is key to preventing further spread, but there is confusion over the meaning of 'airborne' whenever transmission is discussed. Scientific ambivalence originates from evidence published many years ago which has generated mythological beliefs that obscure current thinking. This article collates and explores some of the most commonly held dogmas on airborne transmission in order to stimulate revision of the science in the light of current evidence. Six 'myths' are presented, explained and ultimately refuted on the basis of recently published papers and expert opinion from previous work related to similar viruses. There is little doubt that SARS-CoV-2 is transmitted via a range of airborne particle sizes subject to all the usual ventilation parameters and human behaviour. Experts from specialties encompassing aerosol studies, ventilation, engineering, physics, virology and clinical medicine have joined together to produce this review to consolidate the evidence for airborne transmission mechanisms, and offer justification for modern strategies for prevention and control of COVID-19 in health care and the community.


Subject(s)
Aerosols , Air Microbiology , COVID-19/prevention & control , COVID-19/transmission , Infection Control/methods , Pandemics/prevention & control , Ventilation/methods , Adult , Aged , Aged, 80 and over , COVID-19/epidemiology , Female , Humans , Male , Middle Aged , SARS-CoV-2
7.
MethodsX ; 7: 100963, 2020.
Article in English | MEDLINE | ID: mdl-32637335

ABSTRACT

Graphene quantum dots (GQDs) possess excellent optical and electrical properties that can be used in a wide variety of application. Synthesis of hybrid nanoparticles with GQDs have been known to improve the properties further. Therefore, in this method, graphene quantum dots -gold (GQD-Au) hybrid nanoparticles were synthesized using GQDs which reduces HAuCl4.3H2O to Au nanoparticles on its surface at room temperature. The GQDs with self-passivated layers were synthesized by microwave assisted hydrothermal method using glucose as a single precursor. The synthesis process does not involve the use of harmful chemicals. The whole synthesis process of GQD and GQD-Au hybrid nanoparticles takes only five minutes. The synthesized GQDs have been extracted using citrate in order to increase the stability of the hybrid nanoparticles for up to four weeks. The size of the synthesized GQD-Au hybrid nanoparticles is in the range of 5-100 nm and were found to be luminescent under UV-A illumination. The merit of the following method over other synthesis techniques include its rapidity, ease of preparation, and no requirement of elaborate synthesis procedures and/or harmful chemicals. The GQD-Au hybrid nanoparticles can be used in several applications such as luminescent coatings for glass and windowpanes for automobiles, etc. The reducing property of GQDs can further be utilized for the reduction of various metal salts (AgNO3) and organic dyes (methylene blue and methyl orange). . It presents a method/protocol-development of the luminescent GQD-Au hybrid particles of size ~ 5-100 nm. . The GQD-Au hybrid particles find potential applications in luminescent coating applications.

8.
Nanomaterials (Basel) ; 9(12)2019 Dec 11.
Article in English | MEDLINE | ID: mdl-31835790

ABSTRACT

In this work, porous carbon-vanadium oxynitride (C-V2NO) nanostructures were obtained at different nitridation temperature of 700, 800 and 900 °C using a thermal decomposition process. The X-ray diffraction (XRD) pattern of all the nanomaterials showed a C-V2NO single-phase cubic structure. The C-V2NO obtained at 700 °C had a low surface area (91.6 m2 g-1), a moderate degree of graphitization, and a broader pore size distribution. The C-V2NO obtained at 800 °C displayed an interconnected network with higher surface area (121.6 m2 g-1) and a narrower pore size distribution. In contrast, at 900 °C, the C-V2NO displayed a disintegrated network and a decrease in the surface area (113 m2 g-1). All the synthesized C-V2NO yielded mesoporous oxynitride nanostructures which were evaluated in three-electrode configuration using 6 M KOH aqueous electrolyte as a function of temperature. The C-V2NO@800 °C electrode gave the highest electrochemical performance as compared to its counterparts due to its superior properties. These results indicate that the nitridation temperature not only influences the morphology, structure and surface area of the C-V2NO but also their electrochemical performance. Additionally, a symmetric device fabricated from the C-V2NO@800 °C displayed specific energy and power of 38 W h kg-1 and 764 W kg-1, respectively, at 1 A g-1 in a wide operating voltage of 1.8 V. In terms of stability, it achieved 84.7% as capacity retention up to 10,000 cycles which was confirmed through the floating/aging measurement for up to 100 h at 10 A g-1. This symmetric capacitor is promising for practical applications due to the rapid and easy preparation of the carbon-vanadium oxynitride materials.

9.
Biomed Microdevices ; 22(1): 6, 2019 12 16.
Article in English | MEDLINE | ID: mdl-31844990

ABSTRACT

Advancements in health care monitoring demand a rapid, accurate and reliable early diagnosis of "Heart Attack" (acute myocardial infarction) with an objective to develop a cost-effective, rapid and label-free point of care diagnostic test kit for the detection of cardiac troponin I (cTnI) on paper-based multi-frequency impedimetric transducers. Paper based sensing platforms were developed by integrating carboxyl group functionalized multi-walled carbon nanotubes (MWCNT) with antibodies of cardiac troponin I (anti-cTnI) biomarker and was characterized using Electrochemical Impedance Spectroscopy (EIS). Various concentrations of cTnI with anti cTnI were studied as a function of impedance change. The suitability of the proposed immunosensor is demonstrated by spiking cTnI in blood serum samples. The limit of detection (LoD) and sensitivity of the proposed sensor was determined to be 0.05 ng/mL and 1.85 mΩ/ng/mL respectively, with a response time of ~1 min. The shelf life of the fabricated sensor was nearly 30 days. The rapid response, very low detection limit, and cost effectiveness offer a portable platform to detect cTnI in blood serum samples. The proposed immunosensor, therefore, offers an affordable healthcare diagnostic platform in resource limited areas.


Subject(s)
Immunoassay/methods , Myocardium/metabolism , Paper , Point-of-Care Systems , Troponin I/analysis , Antibodies, Immobilized/chemistry , Antibodies, Immobilized/immunology , Biomarkers/analysis , Biomarkers/blood , Electric Impedance , Electrochemistry , Electrodes , Humans , Limit of Detection , Nanotubes, Carbon/chemistry , Troponin I/blood , Troponin I/metabolism
10.
ACS Omega ; 4(11): 14589-14598, 2019 Sep 10.
Article in English | MEDLINE | ID: mdl-31528813

ABSTRACT

Silicon-oxide-nanoparticle (SiO2-NP) heteroatoms were decorated/deposited onto multiwall carbon nanotube (MWCNT) surface to tune the properties of MWCNTs for electronic and magnetic applications. To achieve this objective, SiO2-NPs and MWCNTs were prepared and suspended together into toluene and heated at <100 °C for the formation of MWCNTs/SiO2-NP nanocomposites. A change in the microstructure, electronic, electrical, and magnetic behaviors of MWCNT nanocomposites decorated/deposited with silicon content was investigated using different techniques, viz., scanning electron microscopy, X-ray diffraction, Raman spectroscopy, and X-ray photoelectron spectroscopy for structural, compositional, and electronic structure, while current-voltage was used for electrical properties and field-dependent magnetization and electron spin resonance techniques were used for magnetic properties. The results indicated that SiO2-NPs adhered onto MWCNTs, resulting in variation in the material conductivity with the Si-NP content. The coercivity of MWCNT nanocomposites adhered with 1.5 atom % Si-NPs (H C@40 K = 689 Oe) is higher than that of those adhered with 5.75 atom % Si-NPs (H C@40 K = 357 Oe). In general, the results provide information about the possibilities of tuning the electronic, electrical, and magnetic properties of MWCNTs by adherence of SiO2-NPs onto them. This tuning of material properties could be useful for different electronic and magnetic device applications.

11.
J Environ Manage ; 236: 481-489, 2019 Apr 15.
Article in English | MEDLINE | ID: mdl-30771668

ABSTRACT

Bimetallic nanoparticles are effective for the removal of organic pollutants from environmental water samples through catalytic degradation reactions. Hence, this work reports on the preparation of Fe/Ag bimetallic nanoparticles immobilized on electrospun polyacrylonitrile nanofibers (PAN NFs) pre-functionalized with EDTA and ethylenediamine (EDA) chelating agents. Characterization techniques included attenuated total reflectance coupled to Fourier transform infrared spectrometer (ATR-FTIR), X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), scanning electron microscopy (SEM) and thermogravimetric analysis (TGA). The liquid chromatography coupled to a mass spectrometer (HPLC-MS) was used to investigate the degradation by-products. The impregnation of EDTA-EDA chelating agents imparted changes on the pristine PAN NFs as evidenced by increased nanofiber's average diameter and surface chemistry. The zero valent Fe and Ag NPs were successfully immobilized on PAN NFs and their catalytic activity was tested for the degradation of azo dyes. Results showed efficient decolourization of methyl orange dye molecules from synthetic water samples after four (4) cycles of reuse (e.g. >96% removal efficiency). The hydrogenation of methyl orange was found to be the removal mechanism due to the presence of hydrogenated methyl orange by-products in the treated water samples. Therefore, the fabricated nanocomposites exhibit potential application for the remediation of textile wastewater.


Subject(s)
Metal Nanoparticles , Nanofibers , Acrylic Resins , Azo Compounds , Chelating Agents , Edetic Acid , Silver
12.
J Phys Condens Matter ; 31(13): 135501, 2019 Apr 03.
Article in English | MEDLINE | ID: mdl-30609419

ABSTRACT

The correlation of electronic structure and magnetic behaviors of layered molybdenum disulfide (MoS2) nanosheets, mechanically exfoliated from pristine hexagonal crystal (2H-MoS2) have been studied. Raman spectra show the energy difference (ΔE) between two Raman peaks A 1g and [Formula: see text] was about 20.2 cm-1, indicating the formation of mono-/bi-layered MoS 2 nanosheets as obtained after mechanical exfoliation from pristine 2H-MoS 2 . The absence of the reflection peak (0 0 2) in x-ray diffraction patterns confirms the formation of few-layered and mono-/bi-layered MoS 2 nanosheets with reduced thickness. Mo 3d and S 2p  XPS core level peaks shifted to higher energy with the reduction of the number of layers in exfoliated MoS2. As the number of layers decreased, valence band maximum position increased from 1.11 eV (pristine MoS2) to 1.57 eV (mono-/bi-layered MoS 2 nanosheets), whereas the surface work function (Ф) reduced from 4.85 eV (pristine MoS2) to 4.47 eV (mono-/bi-layered MoS2 nanosheets), as observed from UPS (He-I) measurements. UPS (He-II) spectra, as well as VB-PES spectra of mono-/bi-layered MoS 2 nanosheets, exhibits an enhanced valence band density of states (DOS) of S 3p -derived states near Fermi level (E f). Mo L II-edge and S K-edge x-ray absorption near edge structure spectra of mono-/bi-layered MoS 2 nanosheets show the splitting of different peaks that cause a noticeable change in their band structure. Magnetic M-H hysteresis loops measurement clearly demonstrates the increase of room temperature ferromagnetism from pristine to mono-/bi-layer MoS2, due to the existence of defects ('S'-vacancies or defects at the grain boundaries region) and the increase of DOS.

13.
Chem Sci ; 10(41): 9530-9541, 2019 Nov 07.
Article in English | MEDLINE | ID: mdl-32055324

ABSTRACT

In spite of achieving high power conversion efficiency (PCE), organo-halide perovskites suffer from long term stability issues. Especially the grain boundaries of polycrystalline perovskite films are considered as giant trapping sites for photo-generated carriers and therefore play an important role in charge transportation dynamics. Surface engineering via grain boundary modification is the most promising way to resolve this issue. A unique antisolvent-cum-quantum dot (QD) assisted grain boundary modification approach has been employed for creating monolithically grained, pin-hole free perovskite films, wherein the choice of all-inorganic CsPbBr x I3-x (x = 1-2) QDs is significant. The grain boundary filling by QDs facilitates the formation of compact films with 1-2 µm perovskite grains as compared to 300-500 nm grains in the unmodified films. The solar cells fabricated by CsPbBr1.5I1.5 QD modification yield a PCE of ∼16.5% as compared to ∼13% for the unmodified devices. X-ray photoelectron spectral analyses reveal that the sharing of electrons between the PbI6 - framework in the bulk perovskite and Br- ions in CsPbBr1.5I1.5 QDs facilitates the charge transfer process while femtosecond transient absorption spectroscopy (fs-TAS) suggests quicker trap filling and enhanced charge carrier recombination lifetime. Considerable ambient stability up to ∼720 h with <20% PCE degradation firmly establishes the strategic QD modification of bulk perovskite films.

14.
Sci Rep ; 8(1): 15779, 2018 Oct 25.
Article in English | MEDLINE | ID: mdl-30361523

ABSTRACT

This investigation reports on anisotropy in the magnetic interaction, lattice-orbital coupling and degree of phonon softening in single crystal Ni3TeO6 (NTO) using temperature- and polarization-dependent X-ray absorption spectroscopic techniques. The magnetic field-cooled and zero-field-cooled measurements and temperature-dependent Ni L3,2-edge X-ray magnetic circular dichroism spectra of NTO reveal a weak Ni-Ni ferromagnetic interaction close to ~60 K (TSO: temperature of the onset of spin ordering) with a net alignment of Ni spins (the uncompensated components of the Ni moments) along the crystallographic c-axis, which is absent from the ab-plane. Below the Néel temperature, TN~ 52 K, NTO is stable in the antiferromagnetic state with its spin axis parallel to the c-axis. The Ni L3,2-edge X-ray linear dichroism results indicate that above TSO, the Ni 3d eg electrons preferentially occupy the out-of-plane 3d3z2-r2 orbitals and switch to the in-plane 3dx2-y2 orbitals below TSO. The inherent distortion of the NiO6 octahedra and anisotropic nearest-neighbor Ni-O bond lengths between the c-axis and the ab-plane of NTO, followed by anomalous Debye-Waller factors and orbital-lattice in conjunction with spin-phonon couplings, stabilize the occupied out-of-plane (3d3z2-r2) and in-plane (3dx2-y2) Ni eg orbitals above and below TSO, respectively.

15.
J Nanosci Nanotechnol ; 18(8): 5470-5484, 2018 Aug 01.
Article in English | MEDLINE | ID: mdl-29458600

ABSTRACT

Nitrogen-doped graphene oxide (NGO) nanosheets were prepared via a facile one-pot modified Hummer's approach at low temperatures using graphite powder and flakes as starting materials in the presence of a nitrogen precursor. It was found that the morphology, structure, composition and surface chemistry of the NGO nanosheets depended on the nature of the graphite precursor used. GO nanosheets doped with nitrogen atoms exhibited a unique structure with few thin layers and wrinkled sheets, high porosity and structural defects. NGO sheets made from graphite powder (NGOp) exhibited excellent thermal stability and remarkably high surface area (up to 240.53 m2 ·g-1) compared to NGO sheets made from graphite flakes (NGOf) which degraded at low temperatures and had an average surface area of 24.70 m2 ·g-1. NGOf sheets had a size range of 850 to 2200 nm while NGOp sheets demonstrated obviously small sizes (460-1600 nm) even when exposed to different pH conditions. The NGO nanosheets exhibited negatively charged surfaces in a wide pH range (1 to 12) and were found to be stable above pH 6. In addition, graphite flakes were found to be more suitable for the production of NGO as they produced high N-doping levels (0.65 to 1.29 at.%) compared to graphite powders (0.30 to 0.35 at.%). This study further demonstrates that by adjusting the amount of N source in the host GO, one can tailor its thermal stability, surface morphology, surface chemistry and surface area.

17.
Dev Med Child Neurol ; 59(12): 1256-1260, 2017 12.
Article in English | MEDLINE | ID: mdl-28972277

ABSTRACT

AIM: To determine the validity of the proposed clinical diagnostic criteria for anti-N-methyl-d-aspartate receptor (NMDAR) encephalitis in paediatric patients. METHOD: The diagnostic criteria for anti-NMDAR encephalitis proposed by Graus et al. (2016) use clinical features and conventional investigations to facilitate early immunotherapy before antibody status is available. The criteria are satisfied if patients develop four out of six symptom groups within 3 months, together with at least one abnormal investigation (electroencephalography/cerebrospinal fluid) and reasonable exclusion of other disorders. We evaluated the validity of the criteria using a retrospective cohort of paediatric patients with encephalitis. Twenty-nine patients with anti-NMDAR encephalitis and 74 comparison children with encephalitis were included. RESULTS: As expected, the percentage of patients with anti-NMDAR encephalitis who fulfilled the clinical criteria increased over time. During the hospital inpatient admission, most patients (26/29, 90%) with anti-NMDAR encephalitis fulfilled the criteria, significantly more than the comparison group (3/74, 4%) (p<0.001). The median time of fulfilling the criteria in patients with anti-NMDAR encephalitis was 2 weeks from first symptom onset (range 1-6). The sensitivity of the criteria was 90% (95% confidence interval 73-98) and the specificity was 96% (95% confidence interval 89-99). INTERPRETATION: The proposed diagnostic criteria for anti-NMDAR encephalitis have good sensitivity and specificity. Incomplete criteria do not exclude the diagnosis. WHAT THIS PAPER ADDS: The proposed clinical diagnostic criteria for anti-N-methyl-d-aspartate receptor (NMDAR) encephalitis by Graus et al. (2016) have high sensitivity and specificity in paediatric patients. The median time of fulfilling the criteria in patients with anti-NMDAR was 2 weeks from first symptom onset.


Subject(s)
Anti-N-Methyl-D-Aspartate Receptor Encephalitis/diagnosis , Practice Guidelines as Topic/standards , Adolescent , Anti-N-Methyl-D-Aspartate Receptor Encephalitis/cerebrospinal fluid , Anti-N-Methyl-D-Aspartate Receptor Encephalitis/physiopathology , Child , Cohort Studies , Electroencephalography , Humans , Sensitivity and Specificity , Time Factors
18.
J Phys Condens Matter ; 29(40): 405803, 2017 Oct 11.
Article in English | MEDLINE | ID: mdl-28718778

ABSTRACT

The evolution of various magnetic ordering has been studied for the orthorhombic perovskite GdMn1-x Fe x O3 (0 ⩽ x ⩽ 0.7) system to obtain its comprehensive magnetic phase diagram. We observed that the substitution of Fe in GdMnO3 increases the antiferromagnetic Neel temperature (T N) from 40 K to above 400 K and importantly induces a spin-reorientation transition (T SR) for x ⩾ 0.4. These transitions are close to room temperature at x = 0.5 and then gradually separated at a higher x value. The static orbital ordering induced by the Jahn-Teller distortion seems to play an important role in changing the T N. The variations of spin-reorientation ordering along with the competition between the magnetic orderings as a function of the composition were discussed with respect to antisymmetric exchange interactions and Mn3+ single-ion anisotropy in detail. In addition, the correlation between structural and magnetic properties suggests that the subtle structural change at composition x = 0.4 may affect the magnetic ordering. The observed tunable T SR and T N in GdMn1-x Fe x O3 could add a practical value for these compositions in fields like spintronics and sensors.

19.
Sci Rep ; 7: 42235, 2017 02 10.
Article in English | MEDLINE | ID: mdl-28186190

ABSTRACT

Nitrogen-doped graphene oxides (GO:Nx) were synthesized by a partial reduction of graphene oxide (GO) using urea [CO(NH2)2]. Their electronic/bonding structures were investigated using X-ray absorption near-edge structure (XANES), valence-band photoemission spectroscopy (VB-PES), X-ray emission spectroscopy (XES) and resonant inelastic X-ray scattering (RIXS). During GO:Nx synthesis, different nitrogen-bonding species, such as pyrrolic/graphitic-nitrogen, were formed by replacing of oxygen-containing functional groups. At lower N-content (2.7 at%), pyrrolic-N, owing to surface and subsurface diffusion of C, N and NH is deduced from various X-ray spectroscopies. In contrast, at higher N-content (5.0 at%) graphitic nitrogen was formed in which each N-atom trigonally bonds to three distinct sp2-hybridized carbons with substitution of the N-atoms for C atoms in the graphite layer. Upon nitrogen substitution, the total density of state close to Fermi level is increased to raise the valence-band maximum, as revealed by VB-PES spectra, indicating an electron donation from nitrogen, molecular bonding C/N/O coordination or/and lattice structure reorganization in GO:Nx. The well-ordered chemical environments induced by nitrogen dopant are revealed by XANES and RIXS measurements.

20.
Oncogene ; 36(2): 194-207, 2017 01 12.
Article in English | MEDLINE | ID: mdl-27270424

ABSTRACT

Flap endonuclease-1 (FEN1) is a multifunctional, structure-specific nuclease that has a critical role in maintaining human genome stability. FEN1 mutations have been detected in human cancer specimens and have been suggested to cause genomic instability and cancer predisposition. However, the exact relationship between FEN1 deficiency and cancer susceptibility remains unclear. In the current work, we report a novel colorectal cancer-associated FEN1 mutation, L209P. This mutant protein lacks the FEN, exonuclease (EXO) and gap endonuclease (GEN) activities of FEN1 but retains DNA-binding affinity. The L209P FEN1 variant interferes with the function of the wild-type FEN1 enzyme in a dominant-negative manner and impairs long-patch base excision repair in vitro and in vivo. Expression of L209P FEN1 sensitizes cells to DNA damage, resulting in endogenous genomic instability and cellular transformation, as well as tumor growth in a mouse xenograft model. These data indicate that human cancer-associated genetic alterations in the FEN1 gene can contribute substantially to cancer development.


Subject(s)
Cell Transformation, Neoplastic/genetics , Colorectal Neoplasms/genetics , DNA Repair , Flap Endonucleases/genetics , Mutation , Animals , Cell Line, Tumor , Cell Proliferation , Cell Transformation, Neoplastic/metabolism , Colorectal Neoplasms/metabolism , DNA Damage , Flap Endonucleases/metabolism , Genomic Instability , Humans , Mice , Neoplasm Transplantation , Protein Binding
SELECTION OF CITATIONS
SEARCH DETAIL
...