Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Entropy (Basel) ; 25(12)2023 Dec 05.
Article in English | MEDLINE | ID: mdl-38136505

ABSTRACT

A postulate that relates global warming to higher entropy generation rate demand in the tropospheric is offered and tested. This article introduces a low-complexity model to calculate the entropy generation rate required in the troposphere. The entropy generation rate per unit volume is noted to be proportional to the square of the Earth's average surface temperature for a given positive rate of surface warming. The main postulate is that the troposphere responds with mechanisms to provide for the entropy generation rate that involves specific cloud morphologies and wind behavior. A diffuse-interface model is used to calculate the entropy generation rates of clouds. Clouds with limited vertical development, like the high-altitude cirrus or mid-altitude stratus clouds, are close-to-equilibrium clouds that do not generate much entropy but contribute to warming. Clouds like the cumulonimbus permit rapid vertical cloud development and can rapidly generate new entropy. Several extreme weather events that the Earth is experiencing are related to entropy-generating clouds that discharge a high rate of rain, hail, or transfer energy in the form of lightning. The water discharge from a cloud can cool the surface below the cloud but also add to the demand for a higher entropy generation rate in the cloud and troposphere. The model proposed predicts the atmospheric conditions required for bifurcations to severe-weather clouds. The calculated vertical velocity of thunderclouds associated with high entropy generation rates matches the recorded observations. The scale of instabilities for an evolving diffuse interface is related to the entropy generation rate per unit volume. Significant similarities exist between the morphologies and the entropy generation rate correlations in vertical cloud evolution and directionally solidified grainy microstructures. Such similarities are also explored to explore a generalized framework of pattern evolution and establish the relationships with the corresponding entropy generation rate. A complex system like the troposphere can invoke multiple phenomena that dominate at different spatial scales to meet the demand for an entropy generation rate. A few such possibilities are presented in the context of rapid and slow changes in weather patterns.

2.
Entropy (Basel) ; 23(8)2021 Aug 22.
Article in English | MEDLINE | ID: mdl-34441233

ABSTRACT

Self-organization that leads to the discontinuous emergence of optimized new patterns is related to entropy generation and the export of entropy. Compared to the original pattern that the new, self-organized pattern replaces, the new features could involve an abrupt change in the pattern-volume. There is no clear principle of pathway selection for self-organization that is known for triggering a particular new self-organization pattern. The new pattern displays different types of boundary-defects necessary for stabilizing the new order. Boundary-defects can contain high entropy regions of concentrated chemical species. On the other hand, the reorganization (or refinement) of an established pattern is a more kinetically tractable process, where the entropy generation rate varies continuously with the imposed variables that enable and sustain the pattern features. The maximum entropy production rate (MEPR) principle is one possibility that may have predictive capability for self-organization. The scale of shapes that form or evolve during self-organization and reorganization are influenced by the export of specific defects from the control volume of study. The control volume (CV) approach must include the texture patterns to be located inside the CV for the MEPR analysis to be applicable. These hypotheses were examined for patterns that are well-characterized for solidification and wear processes. We tested the governing equations for bifurcations (the onset of new patterns) and for reorganization (the fine tuning of existing patterns) with published experimental data, across the range of solidification morphologies and nonequilibrium phases, for metallic glass and featureless crystalline solids. The self-assembling features of surface-texture patterns for friction and wear conditions were also modeled with the entropy generation (MEPR) principle, including defect production (wear debris). We found that surface texture and entropy generation in the control volume could be predictive for self-organization. The main results of this study provide support to the hypothesis that self-organized patterns are a consequence of the maximum entropy production rate per volume principle. Patterns at any scale optimize a certain outcome and have utility. We discuss some similarities between the self-organization behavior of both inanimate and living systems, with ideas regarding the optimizing features of self-organized pattern features that impact functionality, beauty, and consciousness.

SELECTION OF CITATIONS
SEARCH DETAIL
...