Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 44
Filter
Add more filters










Publication year range
1.
RSC Adv ; 14(28): 19726-19734, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38903663

ABSTRACT

All-solid-state Na polymer batteries are desired as the next generation of high-capacity batteries owing to their high safety and abundant resources. However, the degradation of the positive electrode/electrolyte interface with cycling leads to a decrease in capacity and a significant increase in interfacial resistance. In this study, to suppress the interfacial degradation, we prepared positive electrode sheets through a combination of simple mixing and pasting with the addition of binders and conductive additives, using NaCoO2 coated with two types of inorganic oxides as the active material. The influence of the coatings on the electrochemical properties of the fabricated all-solid-state Na polymer battery was investigated by performing constant-current charge-discharge tests, and the coating morphology was characterized by electron microscopy and spectroscopic measurements. Compared with the non-coated positive electrode, the coated electrodes not only enhanced the battery capacity and improved the cycling characteristics but also effectively suppressed the formation of byproducts during charge-discharge cycling, owing to the electrochemical stability and Na+ conductivity of the inorganic oxide coatings. Moreover, despite the chemically unstable properties of powdered NaCoO2, the application of this mixing method effectively suppressed its degradation.

2.
Chem Asian J ; : e202301096, 2023 Dec 25.
Article in English | MEDLINE | ID: mdl-38146061

ABSTRACT

We investigated supported-MoO3 materials effective for the chemical looping dry reforming of methane (CL-DRM) to decrease the reaction temperature. Ni-modified molybdenum zirconia (Ni/MoO3 /ZrO2 ) showed CL-DRM activity under isothermal reaction conditions of 650 °C, which was 100-200 °C lower than the previously reported oxide-based materials. Ni/MoO3 /ZrO2 activity strongly depends on the MoO3 loading amount. The optimal loading amount was 9.0 wt.% (Ni/MoO3 (9.0)/ZrO2 ), wherein two-dimensional polymolybdate species were dominantly formed. Increasing the loading amount to more than 12.0 wt.% resulted in a loss of activity owing to the formation of bulk Zr(MoO4 )2 and/or MoO3 . In situ Mo K-edge XANES studies revealed that the surface polymolybdate species serve as oxygen storage sites. The Mo6+ species were reduced to Mo4+ species by CH4 to produce CO and H2 . The reduced Mo species reoxidized by CO2 with the concomitant formation of CO. The developed Ni/MoO3 (9.0)/ZrO2 was applied to the long-term CL-DRM under high concentration conditions (20 % CH4 and 20 % CO2 ) at 650 °C, with two pathways possible for converting CH4 and CO2 to CO and H2 via the redox reaction of the Mo species and coke formation.

3.
RSC Adv ; 13(31): 21667-21672, 2023 Jul 12.
Article in English | MEDLINE | ID: mdl-37476047

ABSTRACT

To precisely evaluate the electrochemical properties of a battery of active material, we proposed a "concentration shift experiment" using single-particle electrochemical measurement (SPEM) and a diluted electrode sheet (DES). SPEM can be used for information, such as the charge-discharge and resistance properties of only the active material (extremely dilute condition: ≈0). DES consists of concentrations varying from 1% to 100% of the active material (LiCoO2) and inactive material (α-Al2O3), electrically conductive additive and binder polymer onto an Al current collector. The resistance components derived from the LiCoO2 single particles were measured and calculated. Their apparent activation energy (Ea) was 27 kJ mol-1, which is relatively low compared with the applied-type sheet electrode (30-60 kJ mol-1). Simple electric/ionic conductive route was analyzed using SPEM cell, and the fundamental LiCoO2 originated Ea could be calculated. Resistance components attributed to LiCoO2 were also measured and extracted by alternating current impedance measurements using DES. The resistance non-linearly decreased with LiCoO2 concentration, and the percolation and inhomogeneity of LiCoO2 particles were suspected. The planful isolation of an active material particle should be critical for the overall information on an electrode particle.

4.
Molecules ; 26(21)2021 Nov 05.
Article in English | MEDLINE | ID: mdl-34771117

ABSTRACT

Chitooligosaccharides exhibit several biomedical activities, such as inflammation and tumorigenesis reduction in mammals. The mechanism of the chitooligosaccharides' formation in vivo has been, however, poorly understood. Here we report that mouse acidic chitinase (Chia), which is widely expressed in mouse tissues, can produce chitooligosaccharides from deacetylated chitin (chitosan) at pH levels corresponding to stomach and lung tissues. Chia degraded chitin to produce N-acetyl-d-glucosamine (GlcNAc) dimers. The block-type chitosan (heterogenous deacetylation) is soluble at pH 2.0 (optimal condition for mouse Chia) and was degraded into chitooligosaccharides with various sizes ranging from di- to nonamers. The random-type chitosan (homogenous deacetylation) is soluble in water that enables us to examine its degradation at pH 2.0, 5.0, and 7.0. Incubation of these substrates with Chia resulted in the more efficient production of chitooligosaccharides with more variable sizes was from random-type chitosan than from the block-type form of the molecule. The data presented here indicate that Chia digests chitosan acquired by homogenous deacetylation of chitin in vitro and in vivo. The degradation products may then influence different physiological or pathological processes. Our results also suggest that bioactive chitooligosaccharides can be obtained conveniently using homogenously deacetylated chitosan and Chia for various biomedical applications.


Subject(s)
Chitinases/metabolism , Chitosan/metabolism , Hydrogen-Ion Concentration , Lung/metabolism , Oligosaccharides/metabolism , Stomach/metabolism , Animals , Chitinases/chemistry , Chitosan/chemistry , Hydrolysis , Mice , Oligosaccharides/chemistry , Organ Specificity , Substrate Specificity , X-Ray Diffraction
5.
Phys Chem Chem Phys ; 23(11): 6832-6840, 2021 Mar 21.
Article in English | MEDLINE | ID: mdl-33725042

ABSTRACT

The elucidation of elemental redox reactions of sulfur is important for improving the performance of lithium-sulfur batteries. The energies of stable structures of Sn, Sn˙-, Sn2-, [LiSn]- and Li2Sn (n = 1-8) were calculated at the CCSD(T)/cc-pVTZ//MP3/cc-pVDZ level. The heats of reduction reactions of S8 and Li2Sn with Li in the solid phase were estimated from the calculated energies and sublimation energies. The estimated heats of the redox reactions show that there are several redox reactions with nearly identical heats of reaction, suggesting that several reactions can proceed simultaneously at the same discharge voltage, although the discharging process was often explained by stepwise reduction reactions. The reduction reaction for the formation of Li2Sn (n = 2-6 and 8) from S8 normalized as a one electron reaction is more exothermic than that for the formation of Li2S directly from S8, while the reduction reactions for the formation of Li2S from Li2Sn are slightly less exothermic than that for the formation of Li2S directly from S8. If the reduction reactions with large exotherm occur first, these results suggest that the reduction reactions forming Li2Sn (n = 2-6 and 8) from S8 occur first, then Li2S is formed, and therefore, a two-step discharge-curve is observed.

6.
J Phys Chem Lett ; 11(11): 4517-4523, 2020 Jun 04.
Article in English | MEDLINE | ID: mdl-32338919

ABSTRACT

Lithium-glyme solvated ionic liquids (Li-G SILs) and superconcentrated electrolyte solutions (SCESs) are expected to be promising electrolytes for next-generation lithium secondary batteries. The former consists of only the oligoether glyme solvated lithium ion and its counteranion, and the latter contains no full solvated Li+ ion by the solvents due to the extremely high Li salt concentration. Although both of them are similar to each other, it is still unclear that both should be room-temperature ionic liquids. To distinctly define them, speciation analyses were performed with the Li-G SIL and the aqueous SCES to evaluate the free solvent concentration in these solutions with a new Raman/infrared spectral analysis technique called complementary least-squares analysis. Furthermore, from a thermodynamic point of view, we investigated the solvent activity and activity coefficient in the gas phase equilibrated with sample solutions and found they can be good criteria for SILs.

7.
RSC Adv ; 9(43): 24922-24927, 2019 Aug 08.
Article in English | MEDLINE | ID: mdl-35528668

ABSTRACT

High ionic carrier mobilities are important for the electrolyte solutions used in high-performance batteries. Based on the functional sharing concept, we fabricated mixed electrolytes consisting of solvate ionic liquids (SIL), which are highly concentrated solution electrolyte, and the non-coordinating low-viscosity dilution solvent 1,1,2,2-tetrafluoroethyl 2,2,3,3-tetrafluoropropyl ether (HFE). We investigated the thermal, transport, and static properties of electrolytes with different ratios of SIL to HFE. In particular, the interactions between the SILs and HFE and static correlations of the coordinating (ether-based molecules), non-coordinating (HFE), and carrier ionic species (lithium salt) were clarified by applying the excess density concept. Ether molecules always formed strong complexes with lithium cations regardless of the absence or presence of HFE. The repulsion force between the SILs and HFE was strongly affected by lithium salt concentration. From our results, we proposed dissociation/association models for these electrolyte systems.

8.
Phys Chem Chem Phys ; 20(26): 17615-17623, 2018 Jul 04.
Article in English | MEDLINE | ID: mdl-29926032

ABSTRACT

The migration behaviours of Li+ in three garnet- and one NASICON-type solid oxide electrolytes were studied on the micrometre scale by pulsed-gradient spin-echo (PGSE) 7Li NMR diffusion spectroscopy to clarify common and specific characteristics of each electrolyte. In these solid electrolytes, clear evidences of grain boundary effects in the diffusion of Li+ were not observed. The Li+ diffusion constants were dependent on parameters such as observation time (Δ) and pulsed field gradient (PFG) strength (g) for all the studied inorganic solid electrolytes. For low Δ values, Li+ ions underwent collisions and diffractions with diffraction distance Rdiffraction [µm]. The apparent Li+ diffusion constants (Dapparent [m2 s-1]) exhibited distributions in a wide range. In this paper, we introduced the apparent diffusion radius, rradius [µm], and compared it with Rdiffraction and mean square displacement (MSD) [µm]; the lengths of these distances were of the micrometre order (10-6 m). The relations between the values of rradius, Rdiffraction and MSD suggested that the migration behaviours of Li+ on the micrometre scale were complicated. Using high Δ and high g values, we obtained an equilibrated value of DLi. The temperature dependences of the number of carrier ions were estimated from the DLi values and ionic conductivities in the four solid oxide electrolytes. For simple comparison and reference, the data of DLi and ionic conductivity of LiPF6 in 1 M solution of propylene carbonate were added.

9.
J Phys Chem B ; 121(48): 10979-10987, 2017 12 07.
Article in English | MEDLINE | ID: mdl-29135254

ABSTRACT

Isotropic Raman scattering and time-of-flight neutron diffraction measurements were carried out for concentrated LiTFSA-EC solutions to obtain structural insight on solvated Li+ as well as the structure of contact ion pair, Li+···TFSA-, formed in highly concentrated EC solutions. Symmetrical stretching vibrational mode of solvated Li+ and solvated Li+···TFSA- ion pair were observed at ν = 168-177 and 202-224 cm-1, respectively. Detailed structural properties of solvated Li+ and Li+···TFSA- contact ion pair were derived from the least-squares fitting analysis of first-order difference function, ΔLi(Q), between neutron scattering cross sections observed for 6Li/7Li isotopically substituted 10 and 25 mol % *LiTFSA-ECd4 solutions. It has been revealed that Li+ in the 10 mol % LiTFSA solution is fully solvated by ca. 4 EC molecules. The nearest neighbor Li+···O(EC) distance and Li+···O(EC)═C(EC) bond angle are determined to be 1.90 ± 0.01 Å and 141 ± 1°, respectively. In highly concentrated 25 mol % LiTFSA-EC solution, the average solvation number of Li+ decreases to ca. 3 and ca. 1.5. TFSA- are directly contacted to Li+. These results agree well with the results of band decomposition analyses of isotropic Raman spectra for intramolecular vibrational modes of both EC and TFSA-.

10.
Sci Rep ; 7(1): 12963, 2017 10 11.
Article in English | MEDLINE | ID: mdl-29021549

ABSTRACT

Chitin, a polymer of N-acetyl-D-glucosamine (GlcNAc), is a major structural component in chitin-containing organism including crustaceans, insects and fungi. Mammals express two chitinases, chitotriosidase (Chit1) and acidic mammalian chitinase (AMCase). Here, we report that pig AMCase is stable in the presence of other digestive proteases and functions as chitinolytic enzyme under the gastrointestinal conditions. Quantification of chitinases expression in pig tissues using quantitative real-time PCR showed that Chit1 mRNA was highly expressed in eyes, whereas the AMCase mRNA was predominantly expressed in stomach at even higher levels than the housekeeping genes. AMCase purified from pig stomach has highest activity at pH of around 2-4 and remains active at up to pH 7.0. It was resistant to robust proteolytic activities of pepsin at pH 2.0 and trypsin and chymotrypsin at pH 7.6. AMCase degraded polymeric chitin substrates including mealworm shells to GlcNAc dimers. Furthermore, we visualized chitin digestion of fly wings by endogenous AMCase and pepsin in stomach extract. Thus, pig AMCase can function as a protease resistant chitin digestive enzyme at broad pH range present in stomach as well as in the intestine. These results indicate that chitin-containing organisms may be a sustainable feed ingredient in pig diet.


Subject(s)
Chitin/metabolism , Chitinases/metabolism , Diet , Endopeptidases/metabolism , Gastrointestinal Tract/metabolism , Animals , Chitinases/genetics , Chitinases/isolation & purification , Chymotrypsin/metabolism , Drosophila/chemistry , Organ Specificity , Pepsinogen A/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Solubility , Substrate Specificity , Swine/genetics , Tenebrio , Tissue Extracts , Trypsin/metabolism , Wings, Animal/chemistry
11.
J Phys Chem B ; 121(37): 8767-8773, 2017 09 21.
Article in English | MEDLINE | ID: mdl-28841313

ABSTRACT

The intermediate scattering functions of concentrated solutions of LiPF6 in propylene carbonate (PC) were measured at various temperatures, two different wavenumbers, and three different concentrations using neutron spin echo (NSE) spectroscopy. The temperature dependence of the relaxation time was larger than that of the steady-state shear viscosity in all cases. The shear relaxation spectra were also determined at different temperatures. The normalized spectra reduced to a master curve when the frequency was multiplied by the steady-state shear viscosity, indicating that the temperature dependence of the steady-state shear viscosity can be explained by that of the relaxation time of the shear stress. It is thus suggested that the dynamics of the shear stress is decoupled from the structural dynamics on the molecular scale.

12.
Phys Chem Chem Phys ; 19(34): 23483-23491, 2017 Aug 30.
Article in English | MEDLINE | ID: mdl-28829075

ABSTRACT

The long-range Li ion diffusion in Li1.5Al0.5Ge1.5(PO4)3 (LAGP), a NASICON-type glass ceramic conductor with high ionic conductivity, was studied using pulsed-gradient spin-echo (PGSE) 7Li NMR. LAGP is stable in air and water, and can be used for all-solid Li batteries as well as next generation Li-air batteries. The Li ion conduction mechanisms in the micrometer space are important for the design of Li batteries and development of new materials. Our previous studies on sulfide-based and garnet-type solid conductors showed that uniform Li+ ion diffusion is hampered by narrow pathways surrounded by stationary anions. The Li ions are engaged in parameter-dependent diffusion with the parameters being observation time (Δ) and pulsed-field gradient (PFG) strength (g); this is completely different from the Li diffusion in solution and polymer electrolytes, and also from molecular diffusion in neutral porous media. In this study, we observed apparent diffusion constant (Dapparent) values for the LAGP, that were almost continuously distributed within a limited range at a certain Δ. At very long observation times (above 300 ms) and large g (∼13 Tm-1), an equilibrated diffusion constant (close to the tracer diffusion constant) could be observed. The apparent activation energy of Li ion diffusion was about 16 kJ mol-1, which was smaller than the activation energy for the ionic conductivity. The temperature-dependent carrier ion numbers were estimated.

13.
Phys Chem Chem Phys ; 19(28): 18262-18272, 2017 Jul 19.
Article in English | MEDLINE | ID: mdl-28696458

ABSTRACT

The interactions of glymes with alkali or alkaline earth metal cations depend strongly on the metal cations. For example, the stabilization energies (Eform) calculated for the formation of cation-triglyme (G3) complexes with Li+, Na+, K+, Mg2+, and Ca2+ at the MP2/6-311G** level were -95.6, -66.4, -52.5, -255.0, and -185.0 kcal mol-1, respectively, and those for the cation-tetraglyme (G4) complexes were -107.7, -76.3, -60.9, -288.3 and -215.0 kcal mol-1, respectively. The electrostatic and induction interactions are the major source of the attraction in the complexes; the contribution of the induction interactions to the attraction is especially significant in the divalent cation-glyme complexes. The binding energies of the cation-G3 complexes with Li+, Na+, K+, Mg2+, and Ca2+ and the bis(trifluoromethylsulfonyl)amide anion ([TFSA]-) were -83.9, -86.6, -80.0, -196.1, and -189.5 kcal mol-1, respectively, and they are larger than the binding energies of the corresponding cation-G4 complexes (-73.6, -75.0, -77.4, -172.1, and -177.2 kcal mol-1, respectively). The binding energies and conformational flexibility of the cation-glyme complexes also affect the melting points of equimolar mixtures of glyme and TFSA salts. Furthermore, the interactions of the metal cations with the oxygen atoms of glymes significantly decrease the HOMO energy levels of glymes. The HOMO energy levels of glymes in the cation-glyme-TFSA complexes are lower than those of isolated glymes, although they are higher than those of the cation-glyme complexes.

14.
J Chem Phys ; 146(2): 024701, 2017 Jan 14.
Article in English | MEDLINE | ID: mdl-28088148

ABSTRACT

Mobile lithium ions in a cubic garnet Li7La3Zr2O12 (Al-stabilized) were studied using 7Li NMR spectroscopy for membrane and powder samples, the latter of which was ground from the membrane. Lithium diffusion in a micrometer space was measured using the pulsed-gradient spin-echo 7Li NMR method between 70 and 130 °C. When the observation time (Δ) was shorter than 20 ms, the echo attenuation showed diffusive diffraction patterns, indicating that the Li+ diffusing space is not free but restricted. For longer Δ, the values of apparent diffusion constant (Dapparent) became gradually smaller to approach an equilibrated value (close to a tracer diffusion constant). In addition, the Dapparent depends on the pulse field gradient strength (g) and became smaller as g became larger. These experimental results suggest that the lithium ions diffuse through Li+ pathways surrounded by stationary anions and lithium ions, and are affected by collisions and diffractions. One-dimensional profiles of the membrane sample of thickness 0.5 mm were observed from 65 to 110 °C and the area intensity, as well as the lithium occurrence near the surface, increased with the increase in temperature. The temperature-dependent area intensity showed a correspondence to the number of Li+ carrier ions estimated from the ionic conductivity and the equilibrated diffusion constant through the Nernst-Einstein relationship.

15.
J Phys Chem Lett ; 7(14): 2832-7, 2016 Jul 21.
Article in English | MEDLINE | ID: mdl-27388117

ABSTRACT

Equimolar mixtures of lithium bis(trifluoromethanesulfonyl)amide (LiTFSA) and tetraglyme (G4: CH3O-(CH2CH2O)4-CH3) yield the solvate (or chelate) ionic liquid [Li(G4)][TFSA], which is a homogeneous transparent solution at room temperature. Solvate ionic liquids (SILs) are currently attracting increasing research interest, especially as new electrolytes for Li-sulfur batteries. Here, we performed neutron total scattering experiments with (6/7)Li isotopic substitution to reveal the Li(+) solvation/local structure in [Li(G4)][TFSA] SILs. The experimental interference function and radial distribution function around Li(+) agree well with predictions from ab initio calculations and MD simulations. The model solvation/local structure was optimized with nonlinear least-squares analysis to yield structural parameters. The refined Li(+) solvation/local structure in the [Li(G4)][TFSA] SIL shows that lithium cations are not coordinated to all five oxygen atoms of the G4 molecule (deficient five-coordination) but only to four of them (actual four-coordination). The solvate cation is thus considerably distorted, which can be ascribed to the limited phase space of the ethylene oxide chain and competition for coordination sites from the TFSA anion.

16.
J Phys Chem B ; 120(13): 3378-87, 2016 Apr 07.
Article in English | MEDLINE | ID: mdl-26959344

ABSTRACT

Hydrofluoroethers have recently been used as the diluent to a lithium battery electrolyte solution to increase and decrease the ionic conductivity and the solution viscosity, respectively. In order to clarify the Li(+) local structure in the 1,1,2,2-tetrafluoroethyl 2,2,3,3-tetrafluoropropyl ether (HFE) diluted [Li(G4)][TFSA] (G4, tetraglyme; TFSA, bis(trifluoromethanesulfonyl)amide) solvate ionic liquid, Raman spectroscopic study has been done with the DFT calculations. It has turned out that the HFE never coordinates to the Li(+) directly, and that the solvent (G4) shared ion pair of Li(+) with TFSA anion (SSIP) and the contact ion pair between Li(+) and TFSA anion (CIP) are found in the neat and HFE diluted [Li(G4)][TFSA] solvate ionic liquid. It is also revealed that the two kinds of the CIP in which TFSA anion coordinates to the Li(+) in monodentate and bidentate manners (hereafter, we call them the monodentate CIP and the bidentate CIP, respectively) exist with the SSIP of predominant [Li(G4)](+) ion-pair species in the neat [Li(G4)][TFSA] solvate ionic liquid, and that the monodentate CIP decreases as diluting with the HFE. To obtain further insight, X-ray total scattering experiments (HEXTS) were carried out with the aid of MD simulations, where the intermolecular force field parameters, mainly partial atomic charges, have been newly proposed for the HFE and glymes. A new peak appeared at around 0.6-0.7 Å(-1) in X-ray structure factors, which was ascribed to the correlation between the [Li(G4)][TFSA] ion pairs. Furthermore, MD simulations were in good agreement with the experiments, from which it is suggested that the terminal oxygen atoms of the G4 in [Li(G4)](+) solvated cation frequently repeat coordinating/uncoordinating to the Li(+), although almost all of the G4 coordinates to the Li(+) to form [Li(G4)](+) solvated cation in the neat and HFE diluted [Li(G4)][TFSA] solvate ionic liquid.

17.
J Phys Chem B ; 119(51): 15675-82, 2015 Dec 24.
Article in English | MEDLINE | ID: mdl-26634880

ABSTRACT

The structure and dynamics of the solutions of LiPF6 in propylene carbonate over a concentration range of 0-3 mol/kg are studied with neutron spin echo spectroscopy, alternating-current (AC) conductometry, and shear impedance spectroscopy. The neutron diffraction shows a prepeak at ≈10 nm(-1) in addition to the main peak at ≈14 nm(-1) when the concentration of the salt is no less than 2 mol/kg. Compared with the frequency-dependent shear viscosity and AC conductivity, the relaxation of the shear stress agrees with that expected from the structural relaxation of the main peak. On the other hand, the relaxation of the conductivity is slower than the shear relaxation at all the concentrations, and the former approximately matches with the relaxation of the prepeak at the highest concentration, 3 mol/kg, which is several times slower than that of the main peak. The possible contribution of the prepeak structure to the ionic conduction is discussed.

18.
Phys Chem Chem Phys ; 17(1): 126-9, 2015 Jan 07.
Article in English | MEDLINE | ID: mdl-25407234

ABSTRACT

Molecular dynamics simulations of equimolar mixtures of glymes (triglyme and tetraglyme) and Li[TFSA] (lithium bis(trifluoromethylsulfonyl)amide) show that the glyme chain length affects the coordination geometries of Li(+), which induces the changes in interactions between the [Li(glyme)](+) complex and [TFSA](-) anions and diffusion of ions in the equimolar mixtures.

19.
J Phys Chem B ; 118(17): 4590-9, 2014 May 01.
Article in English | MEDLINE | ID: mdl-24702446

ABSTRACT

We have measured physicochemical properties of five alkyltrimethylammonium cation-based room-temperature ionic liquids and compared them with those obtained from computational methods. We have found that static properties (density and refractive index) and transport properties (ionic conductivity, self-diffusion coefficient, and viscosity) of these ionic liquids show close relations with the length of the alkyl chain. In particular, static properties obtained by experimental methods exhibit a trend complementary to that by computational methods (refractive index ∝ [polarizability/molar volume]). Moreover, the self-diffusion coefficient obtained by molecular dynamics (MD) simulation was consistent with the data obtained by the pulsed-gradient spin-echo nuclear magnetic resonance technique, which suggests that computational methods can be supplemental tools to predict physicochemical properties of room-temperature ionic liquids.

20.
J Chem Phys ; 138(15): 151101, 2013 Apr 21.
Article in English | MEDLINE | ID: mdl-23614403

ABSTRACT

High-resolution inelastic X-ray scattering (IXS) measurements were performed for room-temperature ionic liquids (ILs) of 1-ethyl-3-methylimidazolium bis(trifluoromethanesulfonyl)amide and bis(fluorosulfonyl)amide, [C2mIm(+)][TFSA(-)] and [C2mIm(+)][FSA(-)], respectively, at ambient temperature. The observed spectra as a function of Q of 1.4-6 nm(-1) can be ascribed to quasi-elastic and inelastic scatterings, so that they are well represented with the fitting by using the Lorentz and the damped harmonic oscillator model functions to yield the dynamic structure factors. It was found in the intermediate scattering function, F(Q, t) that both ILs show the relaxation at t < 10 ps. The IXS measurements were also made on [C2mIm(+)][TFSA(-)] and [C2mIm(+)][FSA(-)] solutions dissolving Li salt. It is suggested that the adding of Li salt to IL significantly prolongs the relaxation time.

SELECTION OF CITATIONS
SEARCH DETAIL
...