Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 24
Filter
Add more filters










Publication year range
1.
J Chem Phys ; 160(11)2024 Mar 21.
Article in English | MEDLINE | ID: mdl-38506293

ABSTRACT

Unsaturated lipids with C=C groups in their alkyl chains are widely present in the cell membrane and food. The C=C groups alter the lipid packing density, membrane stability, and persistence against lipid oxidation. Yet, molecular-level insights into the structure of the unsaturated lipids remain scarce. Here, we probe the molecular structure and organization of monolayers of unsaturated lipids on the water surface using heterodyne-detected sum-frequency generation (HD-SFG) spectroscopy. We vary the location of the C=C in the alkyl chain and find that at high lipid density, the location of the C=C group affects neither the interfacial water organization nor the tail of the alkyl chain. Based on this observation, we use the C=C stretch HD-SFG response to depth-profile the alkyl chain conformation of the unsaturated lipid. We find that the first 1/3 of carbon atoms from the headgroup are relatively rigid, oriented perpendicular to the surface. In contrast, the remaining carbon atoms can be approximated as free rotators, introducing the disordering of the alkyl chains.

2.
Proc Natl Acad Sci U S A ; 121(6): e2314347121, 2024 Feb 06.
Article in English | MEDLINE | ID: mdl-38300862

ABSTRACT

Memristive devices, electrical elements whose resistance depends on the history of applied electrical signals, are leading candidates for future data storage and neuromorphic computing. Memristive devices typically rely on solid-state technology, while aqueous memristive devices are crucial for biology-related applications such as next-generation brain-machine interfaces. Here, we report a simple graphene-based aqueous memristive device with long-term and tunable memory regulated by reversible voltage-induced interfacial acid-base equilibria enabled by selective proton permeation through the graphene. Surface-specific vibrational spectroscopy verifies that the memory of the graphene resistivity arises from the hysteretic proton permeation through the graphene, apparent from the reorganization of interfacial water at the graphene/water interface. The proton permeation alters the surface charge density on the CaF2 substrate of the graphene, affecting graphene's electron mobility, and giving rise to synapse-like resistivity dynamics. The results pave the way for developing experimentally straightforward and conceptually simple aqueous electrolyte-based neuromorphic iontronics using two-dimensional (2D) materials.

3.
Environ Sci Technol ; 58(8): 3830-3837, 2024 Feb 27.
Article in English | MEDLINE | ID: mdl-38353041

ABSTRACT

Ions containing iodine atoms at the vapor-aqueous solution interfaces critically affect aerosol growth and atmospheric chemistry due to their complex chemical nature and multivalency. While the surface propensity of iodide ions has been intensely discussed in the context of the Hofmeister series, the stability of various ions containing iodine atoms at the vapor-water interface has been debated. Here, we combine surface-specific sum-frequency generation (SFG) vibrational spectroscopy with ab initio molecular dynamics simulations to examine the extent to which iodide ions cover the aqueous surface. The SFG probe of the free O-D stretch mode of heavy water indicates that the free O-D group density decreases drastically at the interface when the bulk NaI concentration exceeds ∼2 M. The decrease in the free O-D group density is attributed to the spontaneous appearance of triiodide that covers the topmost interface rather than to the surface adsorption of iodide. This finding demonstrates that iodide is not surface-active, yet the highly surface-active triiodide is generated spontaneously at the water-air interface, even under dark and oxygen-free conditions. Our study provides an important first step toward clarifying iodine chemistry and pathways for aerosol formation.


Subject(s)
Iodides , Iodine , Water/chemistry , Ions/chemistry , Gases , Aerosols
4.
Nat Chem ; 16(4): 644-650, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38225269

ABSTRACT

The distribution of ions at the air/water interface plays a decisive role in many natural processes. Several studies have reported that larger ions tend to be surface-active, implying ions are located on top of the water surface, thereby inducing electric fields that determine the interfacial water structure. Here we challenge this view by combining surface-specific heterodyne-detected vibrational sum-frequency generation with neural network-assisted ab initio molecular dynamics simulations. Our results show that ions in typical electrolyte solutions are, in fact, located in a subsurface region, leading to a stratification of such interfaces into two distinctive water layers. The outermost surface is ion-depleted, and the subsurface layer is ion-enriched. This surface stratification is a key element in explaining the ion-induced water reorganization at the outermost air/water interface.

5.
Nat Commun ; 14(1): 8313, 2023 Dec 14.
Article in English | MEDLINE | ID: mdl-38097633

ABSTRACT

Controlling site-selectivity and reactivity in chemical reactions continues to be a key challenge in modern synthetic chemistry. Here, we demonstrate the discovery of site-selective chemical reactions on the water surface via a sequential assembly approach. A negatively charged surfactant monolayer on the water surface guides the electrostatically driven, epitaxial, and aligned assembly of reagent amino-substituted porphyrin molecules, resulting in a well-defined J-aggregated structure. This constrained geometry of the porphyrin molecules prompts the subsequent directional alignment of the perylenetetracarboxylic dianhydride reagent, enabling the selective formation of a one-sided imide bond between porphyrin and reagent. Surface-specific in-situ spectroscopies reveal the underlying mechanism of the dynamic interface that promotes multilayer growth of the site-selective imide product. The site-selective reaction on the water surface is further demonstrated by three reversible and irreversible chemical reactions, such as imide-, imine-, and 1, 3-diazole (imidazole)- bonds involving porphyrin molecules. This unique sequential assembly approach enables site-selective chemical reactions that can bring on-water surface synthesis to the forefront of modern organic chemistry.

6.
J Phys Chem B ; 127(23): 5288-5294, 2023 Jun 15.
Article in English | MEDLINE | ID: mdl-37284731

ABSTRACT

Organic molecules with aromatic groups at the aqueous interfaces play a central role in atmospheric chemistry, green chemistry, and on-water synthesis. Insights into the organization of interfacial organic molecules can be obtained using surface-specific vibrational sum-frequency generation (SFG) spectroscopy. However, the origin of the aromatic C-H stretching mode peak is unknown, prohibiting us from connecting the SFG signal to the interfacial molecular structure. Here, we explore the origin of the aromatic C-H stretching response by heterodyne-detected SFG (HD-SFG) at the liquid/vapor interface of benzene derivatives and find that, irrespective of the molecular orientation, the sign of the aromatic C-H stretching signals is negative for all the studied solvents. Together with density functional theory (DFT) calculations, we reveal that the interfacial quadrupole contribution dominates, even for the symmetry-broken benzene derivatives, although the dipole contribution is non-negligible. We propose a simple evaluation of the molecular orientation based on the aromatic C-H peak area.

7.
J Am Chem Soc ; 145(19): 10622-10630, 2023 May 17.
Article in English | MEDLINE | ID: mdl-37139910

ABSTRACT

In typical aqueous systems, including naturally occurring sweet and salt water and tap water, multiple ion species are co-solvated. At the water-air interface, these ions are known to affect the chemical reactivity, aerosol formation, climate, and water odor. Yet, the composition of ions at the water interface has remained enigmatic. Here, using surface-specific heterodyne-detected sum-frequency generation spectroscopy, we quantify the relative surface activity of two co-solvated ions in solution. We find that more hydrophobic ions are speciated to the interface due to the hydrophilic ions. Quantitative analysis shows that the interfacial hydrophobic ion population increases with decreasing interfacial hydrophilic ion population at the interface. Simulations show that the solvation energy difference between the ions and the intrinsic surface propensity of ions determine the extent of an ion's speciation by other ions. This mechanism provides a unified view of the speciation of monatomic and polyatomic ions at electrolyte solution interfaces.

9.
Article in English | MEDLINE | ID: mdl-36892269

ABSTRACT

Biosensors with two-dimensional materials have gained wide interest due to their high sensitivity. Among them, single-layer MoS2 has become a new class of biosensing platform owing to its semiconducting property. Immobilization of bioprobes directly onto the MoS2 surface with chemical bonding or random physisorption has been widely studied. However, these approaches potentially cause a reduction of conductivity and sensitivity of the biosensor. In this work, we designed peptides that spontaneously align into monomolecular-thick nanostructures on electrochemical MoS2 transistors in a non-covalent fashion and act as a biomolecular scaffold for efficient biosensing. These peptides consist of repeated domains of glycine and alanine in the sequence and form self-assembled structures with sixfold symmetry templated by the lattice of MoS2. We investigated electronic interactions of self-assembled peptides with MoS2 by designing their amino acid sequence with charged amino acids at both ends. Charged amino acids in the sequence showed a correlation with the electrical properties of single-layer MoS2, where negatively charged peptides caused a shift of threshold voltage in MoS2 transistors and neutral and positively charged peptides had no significant effect on the threshold voltage. The transconductance of transistors had no decrease due to the self-assembled peptides, indicating that aligned peptides can act as a biomolecular scaffold without degrading the intrinsic electronic properties for biosensing. We also investigated the impact of peptides on the photoluminescence (PL) of single-layer MoS2 and found that the PL intensity changed sensitively depending on the amino acid sequence of peptides. Finally, we demonstrated a femtomolar-level sensitivity of biosensing using biotinylated peptides to detect streptavidin.

10.
Angew Chem Int Ed Engl ; 62(10): e202216604, 2023 Mar 01.
Article in English | MEDLINE | ID: mdl-36592114

ABSTRACT

Molecular-level insight into interfacial water at a buried electrode interface is essential in electrochemistry, but spectroscopic probing of the interface remains challenging. Here, using surface-specific heterodyne-detected sum-frequency generation (HD-SFG) spectroscopy, we directly access the interfacial water in contact with the graphene electrode supported on calcium fluoride (CaF2 ). We find phase transition-like variations of the HD-SFG spectra vs. applied potentials, which arises not from the charging/discharging of graphene but from the charging/discharging of the CaF2 substrate through the pseudocapacitive process. The potential-dependent spectra are nearly identical to the pH-dependent spectra, evidencing that the pseudocapacitive behavior is associated with a substantial local pH change induced by water dissociation between the CaF2 and graphene. Our work evidences the local molecular-level effects of pseudocapacitive charging at an electrode/aqueous electrolyte interface.

11.
Phys Rev Lett ; 131(25): 256202, 2023 Dec 22.
Article in English | MEDLINE | ID: mdl-38181372

ABSTRACT

Vibrational coupling between interfacial water molecules is important for energy dissipation after on-water chemistry, yet intensely debated. Here, we quantify the interfacial vibrational coupling strength through the linewidth of surface-specific vibrational spectra of the water's O─H (O─D) stretch region for neat H_{2}O/D_{2}O and their isotopic mixtures. The local-field-effect-corrected experimental SFG spectra reveal that the vibrational coupling between hydrogen-bonded interfacial water O─H groups is comparable to that in bulk water, despite the effective density reduction at the interface.

12.
J Am Chem Soc ; 144(43): 19726-19738, 2022 11 02.
Article in English | MEDLINE | ID: mdl-36273333

ABSTRACT

Understanding the collective behavior of ions at charged surfaces is of paramount importance for geological and electrochemical processes. Ions screen the surface charge, and interfacial fields break the centro-symmetry near the surface, which can be probed using second-order nonlinear spectroscopies. The effect of electrolyte concentration on the nonlinear optical response has been semi-quantitatively explained by mean-field models based on the Poisson-Boltzmann equation. Yet, to explain previously reported ion-specific effects on the spectroscopic response, drastic ion-specific changes in the interfacial properties, including surface acidities and dielectric permittivities, or strong ion adsorption/desorption had to be invoked. Here, we use sum-frequency generation (SFG) spectroscopy to probe the symmetry-breaking of water molecules at a charged silica surface in contact with alkaline metal chloride solutions (LiCl, NaCl, KCl, and CsCl) at various concentrations. We find that the water response varies with the cation: the SFG response is markedly enhanced for LiCl compared to CsCl. We show that within mean-field models, neither specific ion-surface interactions nor a reduced dielectric constant of water near the interface can account for the variation of spectral intensities with cation nature. Molecular dynamics simulations confirm that the decay of the electrochemical potential only weakly depends on the salt type. Instead, the effect of different salts on the optical response is indirect, through the reorganization of the interfacial water: the salt-type-dependent alignment of water directly at the interface can explain the observations.


Subject(s)
Silicon Dioxide , Water , Cations , Chlorides , Sodium Chloride
13.
Proc Natl Acad Sci U S A ; 119(36): e2204156119, 2022 Sep 06.
Article in English | MEDLINE | ID: mdl-36037357

ABSTRACT

The dielectric properties of interfacial water on subnanometer length scales govern chemical reactions, carrier transfer, and ion transport at interfaces. Yet, the nature of the interfacial dielectric function has remained under debate as it is challenging to access the interfacial dielectric with subnanometer resolution. Here we use the vibrational response of interfacial water molecules probed using surface-specific sum-frequency generation (SFG) spectra to obtain exquisite depth resolution. Different responses originate from water molecules at different depths and report back on the local interfacial dielectric environment via their spectral amplitudes. From experimental and simulated SFG spectra at the air/water interface, we find that the interfacial dielectric constant changes drastically across an ∼1 Šthin interfacial water region. The strong gradient of the interfacial dielectric constant leads, at charged planar interfaces, to the formation of an electric triple layer that goes beyond the standard double-layer model.

14.
J Phys Chem B ; 126(33): 6113-6124, 2022 08 25.
Article in English | MEDLINE | ID: mdl-35849538

ABSTRACT

Sum-frequency generation (SFG) spectroscopy provides a unique optical probe for interfacial molecules with interface-specificity and molecular specificity. SFG measurements can be further carried out at different polarization combinations, but the target of the polarization-dependent SFG is conventionally limited to investigating the molecular orientation. Here, we explore the possibility of polarization-dependent SFG (PD-SFG) measurements with heterodyne detection (HD-PD-SFG). We stress that HD-PD-SFG enables accurate determination of the peak amplitude, a key factor of the PD-SFG data. Subsequently, we outline that HD-PD-SFG can be used not only for estimating the molecular orientation but also for investigating the interfacial dielectric profile and studying the depth profile of molecules. We further illustrate the variety of combined simulation and PD-SFG studies.


Subject(s)
Vibration , Spectrum Analysis/methods
15.
Phys Rev Lett ; 128(22): 226001, 2022 Jun 03.
Article in English | MEDLINE | ID: mdl-35714258

ABSTRACT

The three-dimensional spatial distribution of molecules at soft matter interfaces is crucial for processes ranging from membrane biophysics to atmospheric chemistry. While several techniques can access surface composition, obtaining information on the depth distribution is challenging. We develop a noninvasive, polarization-resolved, surface-specific sum-frequency generation spectroscopy providing quantitative depth information. We demonstrate the technique on formic acid molecules at the air-water interface. With increasing molar fraction from 2.5% to 10%, the formic acid molecules shift, on average, ∼0.9 Å into the bulk. The consistency with the simulation data manifests that the technique allows for probing the Ångstrom-scale depth profile.


Subject(s)
Water , Computer Simulation , Spectrum Analysis/methods , Water/chemistry
16.
J Chem Phys ; 156(9): 094703, 2022 Mar 07.
Article in English | MEDLINE | ID: mdl-35259897

ABSTRACT

Many essential processes occur at soft interfaces, from chemical reactions on aqueous aerosols in the atmosphere to biochemical recognition and binding at the surface of cell membranes. The spatial arrangement of molecules specifically at these interfaces is crucial for many of such processes. The accurate determination of the interfacial molecular orientation has been challenging due to the low number of molecules at interfaces and the ambiguity of their orientational distribution. Here, we combine phase- and polarization-resolved sum-frequency generation (SFG) spectroscopy to obtain the molecular orientation at the interface. We extend an exponentially decaying orientational distribution to multiple dimensions, which, in conjunction with multiple SFG datasets obtained from the different vibrational modes, allows us to determine the molecular orientation. We apply this new approach to formic acid molecules at the air-water interface. The inferred orientation of formic acid agrees very well with ab initio molecular dynamics data. The phase-resolved SFG multimode analysis scheme using the multidimensional orientational distribution thus provides a universal approach for obtaining the interfacial molecular orientation.

17.
J Phys Chem B ; 125(37): 10639-10646, 2021 Sep 23.
Article in English | MEDLINE | ID: mdl-34503330

ABSTRACT

The evaporation of molecules from water-organic solute binary mixtures is key for both atmospheric and industrial processes such as aerosol formation and distillation. Deviations from ideal evaporation energetics can be assigned to intermolecular interactions in solution, yet evaporation occurs from the interface, and the poorly understood interfacial, rather than the bulk, structure of binary mixtures affects evaporation kinetics. Here we determine the interfacial structure of nonideal binary mixtures of water with methanol, ethanol, and formic acid, by combining surface-specific vibrational spectroscopy with molecular dynamics simulations. We find that the free, dangling OH groups at the interfaces of these differently behaving nonideal mixtures are essentially indistinguishable. In contrast, the ordering of hydrogen-bonded interfacial water molecules differs substantially at these three interfaces. Specifically, the interfacial water molecules become more disordered (ordered) in mixtures with methanol and ethanol (formic acid), showing higher (lower) vapor pressure than that predicted by Raoult's law.

18.
Langmuir ; 37(29): 8696-8704, 2021 07 27.
Article in English | MEDLINE | ID: mdl-34278791

ABSTRACT

Chiral recognition of peptides on solid surfaces has been studied for a better understanding of their assembly mechanism toward its applications in stereochemistry and enantioselective catalysis. However, moving from small peptides such as dipeptides, understanding the chiral recognition of larger biomolecules such as oligopeptides or peptides with a larger sequence is challenging. Furthermore, their intrinsic mechanism for chiral recognition in liquid conditions was poorly investigated experimentally. Here, we used in/ex situ atomic force microscopy (AFM) to investigate the chiral recognition of self-assembled structures of l/d-type peptides on molybdenum disulfide (MoS2). We chose single-layer MoS2 with a triangular shape as a substrate for the self-assembly of peptides. The facet edges of MoS2 were utilized as a landmark to identify the crystallographic orientation of their ordered structures. We found both peptide enantiomers formed nanowires on MoS2 with a mirror symmetry according to the facet edges of MoS2. From in situ AFM measurements, we found a dimension of a unit cell in the self-assembled structure and proposed a model of lattice matching between peptides and MoS2 lattice. The lattice matching for chiral recognition was further investigated by changing peptide sequences and surface lattice from MoS2 to graphite. This work further deepened the understanding of biomolecular chiral recognition and will lead us to rationally design specific morphologies and conformations of chiral self-assembled structures of peptides with expected functions in the future.


Subject(s)
Graphite , Molybdenum , Dipeptides , Microscopy, Atomic Force , Peptides
19.
J Phys Chem B ; 125(25): 7060-7067, 2021 07 01.
Article in English | MEDLINE | ID: mdl-34159786

ABSTRACT

The origin of the sum-frequency generation (SFG) signal of the water bending mode has been controversially debated in the past decade. Unveiling the origin of the signal is essential, because different assignments lead to different views on the molecular structure of interfacial water. Here, we combine collinear heterodyne-detected SFG spectroscopy at the water-charged lipid interfaces with systematic variation of the salt concentration. The results show that the bending mode response is of a dipolar, rather than a quadrupolar, nature and allows us to disentangle the response of water in the Stern and the diffuse layers. While the diffuse layer response is identical for the oppositely charged surfaces, the Stern layer responses reflect interfacial hydrogen bonding. Our findings thus corroborate that the water bending mode signal is a suitable probe for the structure of interfacial water.


Subject(s)
Water , Hydrogen Bonding , Molecular Structure , Spectrum Analysis , Surface Properties
20.
Nat Commun ; 11(1): 5977, 2020 11 25.
Article in English | MEDLINE | ID: mdl-33239630

ABSTRACT

Coupling between vibrational modes is essential for energy transfer and dissipation in condensed matter. For water, different O-H stretch modes are known to be very strongly coupled both within and between water molecules, leading to ultrafast dissipation and delocalization of vibrational energy. In contrast, the information on the vibrational coupling of the H-O-H bending mode of water is lacking, even though the bending mode is an essential intermediate for the energy relaxation pathway from the stretch mode to the heat bath. By combining static and femtosecond infrared, Raman, and hyper-Raman spectroscopies for isotopically diluted water with ab initio molecular dynamics simulations, we find the vibrational coupling of the bending mode differs significantly from the stretch mode: the intramode intermolecular coupling of the bending mode is very weak, in stark contrast to the stretch mode. Our results elucidate the vibrational energy transfer pathways of water. Specifically, the librational motion is essential for the vibrational energy relaxation and orientational dynamics of H-O-H bending mode.

SELECTION OF CITATIONS
SEARCH DETAIL
...