Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Front Neurosci ; 10: 273, 2016.
Article in English | MEDLINE | ID: mdl-27378842

ABSTRACT

The ionic conductance models of neuronal cells can finely reproduce a wide variety of complex neuronal activities. However, the complexity of these models has prompted the development of qualitative neuron models. They are described by differential equations with a reduced number of variables and their low-dimensional polynomials, which retain the core mathematical structures. Such simple models form the foundation of a bottom-up approach in computational and theoretical neuroscience. We proposed a qualitative-modeling-based approach for designing silicon neuron circuits, in which the mathematical structures in the polynomial-based qualitative models are reproduced by differential equations with silicon-native expressions. This approach can realize low-power-consuming circuits that can be configured to realize various classes of neuronal cells. In this article, our qualitative-modeling-based silicon neuron circuits for analog and digital implementations are quickly reviewed. One of our CMOS analog silicon neuron circuits can realize a variety of neuronal activities with a power consumption less than 72 nW. The square-wave bursting mode of this circuit is explained. Another circuit can realize Class I and II neuronal activities with about 3 nW. Our digital silicon neuron circuit can also realize these classes. An auto-associative memory realized on an all-to-all connected network of these silicon neurons is also reviewed, in which the neuron class plays important roles in its performance.

2.
Chaos ; 25(2): 023105, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25725641

ABSTRACT

Bifurcations of complex mixed-mode oscillations denoted as mixed-mode oscillation-incrementing bifurcations (MMOIBs) have frequently been observed in chemical experiments. In a previous study [K. Shimizu et al., Physica D 241, 1518 (2012)], we discovered an extremely simple dynamical circuit that exhibits MMOIBs. Our model was represented by a slow/fast Bonhoeffer-van der Pol circuit under weak periodic perturbation near a subcritical Andronov-Hopf bifurcation point. In this study, we experimentally and numerically verify that our dynamical circuit captures the essence of the underlying mechanism causing MMOIBs, and we observe MMOIBs and chaos with distinctive waveforms in real circuit experiments.

3.
Chaos ; 24(1): 013137, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24697399

ABSTRACT

This study analyzes an Arnold resonance web, which includes complicated quasi-periodic bifurcations, by conducting a Lyapunov analysis for a coupled delayed logistic map. The map can exhibit a two-dimensional invariant torus (IT), which corresponds to a three-dimensional torus in vector fields. Numerous one-dimensional invariant closed curves (ICCs), which correspond to two-dimensional tori in vector fields, exist in a very complicated but reasonable manner inside an IT-generating region. Periodic solutions emerge at the intersections of two different thin ICC-generating regions, which we call ICC-Arnold tongues, because all three independent-frequency components of the IT become rational at the intersections. Additionally, we observe a significant bifurcation structure where conventional Arnold tongues transit to ICC-Arnold tongues through a Neimark-Sacker bifurcation in the neighborhood of a quasi-periodic Hopf bifurcation (or a quasi-periodic Neimark-Sacker bifurcation) boundary.

4.
Phys Rev E Stat Nonlin Soft Matter Phys ; 84(5 Pt 2): 056209, 2011 Nov.
Article in English | MEDLINE | ID: mdl-22181486

ABSTRACT

In this paper, we analyze the sudden change from chaos to oscillation death generated by the Bonhoeffer-van der Pol (BVP) oscillator under weak periodic perturbation. The parameter values of the BVP oscillator are chosen such that a stable focus and a stable relaxation oscillation coexist if no perturbation is applied. In such a system, complicated bifurcation structure is expected to emerge when weak periodic perturbation is applied because the stable focus and the stable relaxation oscillation coexist in close proximity in the phase plane. We draw a bifurcation diagram of the fundamental harmonic entrainment. The bifurcation structure is complex because there coexist two bifurcation sets. One is the bifurcation set generated in the vicinity of the stable focus, and the other is that generated in the vicinity of the stable relaxation oscillation. By analyzing the bifurcation diagram in detail, we can explain the sudden change from chaos with complicated waveforms to oscillation death. We make it clear that this phenomenon is caused by a saddle-node bifurcation.


Subject(s)
Biophysics/methods , Oscillometry/methods , Algorithms , Animals , Axons , Decapodiformes/physiology , Electricity , Models, Neurological , Models, Statistical , Models, Theoretical , Neurons/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...