Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
J Infect Dis ; 219(7): 1162-1171, 2019 03 15.
Article in English | MEDLINE | ID: mdl-30371803

ABSTRACT

BACKGROUND: A challenge to the design of improved therapeutic agents and prevention strategies for neuroinvasive infection and associated disease is the lack of known natural immune correlates of protection. A relevant model to study such correlates is offered by the Collaborative Cross (CC), a panel of recombinant inbred mouse strains that exhibit a range of disease manifestations upon infection. METHODS: We performed an extensive screen of CC-F1 lines infected with West Nile virus (WNV), including comprehensive immunophenotyping, to identify groups of lines that exhibited viral neuroinvasion or neuroinvasion with disease and lines that remained free of WNV neuroinvasion and disease. RESULTS: Our data reveal that protection from neuroinvasion and disease is multifactorial and that several immune outcomes can contribute. Immune correlates identified include decreased suppressive activity of regulatory T cells at steady state, which correlates with peripheral restriction of the virus. Further, a rapid contraction of WNV-specific CD8+ T cells in the brain correlated with protection from disease. CONCLUSIONS: These immune correlates of protection illustrate additional networks and pathways of the WNV immune response that cannot be observed in the C57BL/6 mouse model. Additionally, correlates of protection exhibited before infection, at baseline, provide insight into phenotypic differences in the human population that may predict clinical outcomes upon infection.


Subject(s)
Collaborative Cross Mice/immunology , Nervous System Diseases/immunology , West Nile Fever/immunology , West Nile virus/immunology , 2',5'-Oligoadenylate Synthetase/genetics , Adaptive Immunity , Animals , Brain/immunology , Brain/pathology , CD4-CD8 Ratio , CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/immunology , Collaborative Cross Mice/genetics , Disease Models, Animal , Heterozygote , Immunity, Innate , Immunophenotyping , Male , Mice , Mice, Inbred C57BL , Nervous System Diseases/microbiology , Polymorphism, Genetic , Spleen/immunology , Spleen/pathology , T-Lymphocytes, Regulatory/immunology , West Nile Fever/complications , West Nile Fever/genetics
2.
mBio ; 9(3)2018 05 01.
Article in English | MEDLINE | ID: mdl-29717007

ABSTRACT

Selective packaging is a mechanism used by multiple virus families to specifically incorporate genomic RNA (gRNA) into virions and exclude other types of RNA. Lineage A betacoronaviruses incorporate a 95-bp stem-loop structure, the packaging signal (PS), into the nsp15 locus of ORF1b that is both necessary and sufficient for the packaging of RNAs. However, unlike other viral PSs, where mutations generally resulted in viral replication defects, mutation of the coronavirus (CoV) PS results in large increases in subgenomic RNA packaging with minimal effects on gRNA packaging in vitro and on viral titers. Here, we show that selective packaging is also required for viral evasion of the innate immune response and optimal pathogenicity. We engineered two distinct PS mutants in two different strains of murine hepatitis virus (MHV) that packaged increased levels of subgenomic RNAs, negative-sense genomic RNA, and even cellular RNAs. All PS mutant viruses replicated normally in vitro but caused dramatically reduced lethality and weight loss in vivo PS mutant virus infection of bone marrow-derived macrophages resulted in increased interferon (IFN) production, indicating that the innate immune system limited the replication and/or pathogenesis of PS mutant viruses in vivo PS mutant viruses remained attenuated in MAVS-/- and Toll-like receptor 7-knockout (TLR7-/-) mice, two well-known RNA sensors for CoVs, but virulence was restored in interferon alpha/beta receptor-knockout (IFNAR-/-) mice or in MAVS-/- mice treated with IFNAR-blocking antibodies. Together, these data indicate that coronaviruses promote virulence by utilizing selective packaging to avoid innate immune detection.IMPORTANCE Coronaviruses (CoVs) produce many types of RNA molecules during their replication cycle, including both positive- and negative-sense genomic and subgenomic RNAs. Despite this, coronaviruses selectively package only positive-sense genomic RNA into their virions. Why CoVs selectively package their genomic RNA is not clear, as disruption of the packaging signal in MHV, which leads to loss of selective packaging, does not affect genomic RNA packaging or virus replication in cultured cells. This contrasts with other viruses, where disruption of selective packaging generally leads to altered replication. Here, we demonstrate that in the absence of selective packaging, the virulence of MHV was significantly reduced. Importantly, virulence was restored in the absence of interferon signaling, indicating that selective packaging is a mechanism used by CoVs to escape innate immune detection.


Subject(s)
Coronavirus Infections/veterinary , Interferon Type I/immunology , Murine hepatitis virus/physiology , Murine hepatitis virus/pathogenicity , Rodent Diseases/immunology , Virus Assembly , Animals , Coronavirus Infections/genetics , Coronavirus Infections/immunology , Coronavirus Infections/virology , Host-Pathogen Interactions , Interferon Type I/genetics , Inverted Repeat Sequences , Male , Mice , Murine hepatitis virus/chemistry , Murine hepatitis virus/genetics , Open Reading Frames , RNA, Viral/chemistry , RNA, Viral/genetics , RNA, Viral/metabolism , Rodent Diseases/genetics , Rodent Diseases/virology , Viral Nonstructural Proteins/genetics , Viral Nonstructural Proteins/metabolism , Virulence , Virus Replication
3.
G3 (Bethesda) ; 7(6): 1665-1682, 2017 06 07.
Article in English | MEDLINE | ID: mdl-28592649

ABSTRACT

The oligoadenylate-synthetase (Oas) gene locus provides innate immune resistance to virus infection. In mouse models, variation in the Oas1b gene influences host susceptibility to flavivirus infection. However, the impact of Oas variation on overall innate immune programming and global gene expression among tissues and in different genetic backgrounds has not been defined. We examined how Oas1b acts in spleen and brain tissue to limit West Nile virus (WNV) susceptibility and disease across a range of genetic backgrounds. The laboratory founder strains of the mouse Collaborative Cross (CC) (A/J, C57BL/6J, 129S1/SvImJ, NOD/ShiLtJ, and NZO/HlLtJ) all encode a truncated, defective Oas1b, whereas the three wild-derived inbred founder strains (CAST/EiJ, PWK/PhJ, and WSB/EiJ) encode a full-length OAS1B protein. We assessed disease profiles and transcriptional signatures of F1 hybrids derived from these founder strains. F1 hybrids included wild-type Oas1b (F/F), homozygous null Oas1b (N/N), and heterozygous offspring of both parental combinations (F/N and N/F). These mice were challenged with WNV, and brain and spleen samples were harvested for global gene expression analysis. We found that the Oas1b haplotype played a role in WNV susceptibility and disease metrics, but the presence of a functional Oas1b allele in heterozygous offspring did not absolutely predict protection against disease. Our results indicate that Oas1b status as wild-type or truncated, and overall Oas1b gene dosage, link with novel innate immune gene signatures that impact specific biological pathways for the control of flavivirus infection and immunity through both Oas1b-dependent and independent processes.


Subject(s)
2',5'-Oligoadenylate Synthetase/genetics , Host-Pathogen Interactions/genetics , Host-Pathogen Interactions/immunology , Transcription, Genetic , West Nile Fever/genetics , West Nile Fever/immunology , West Nile virus/immunology , Animals , Disease Models, Animal , Disease Susceptibility , Gene Expression Profiling , Immunity, Innate/genetics , Immunomodulation/genetics , Immunomodulation/immunology , Male , Mice , Quantitative Trait Loci , Transcriptome , West Nile Fever/virology
4.
PLoS Pathog ; 12(11): e1005996, 2016 Nov.
Article in English | MEDLINE | ID: mdl-27806117

ABSTRACT

Infection with West Nile virus (WNV) leads to a range of disease outcomes, including chronic infection, though lack of a robust mouse model of chronic WNV infection has precluded identification of the immune events contributing to persistent infection. Using the Collaborative Cross, a population of recombinant inbred mouse strains with high levels of standing genetic variation, we have identified a mouse model of persistent WNV disease, with persistence of viral loads within the brain. Compared to lines exhibiting no disease or marked disease, the F1 cross CC(032x013)F1 displays a strong immunoregulatory signature upon infection that correlates with restraint of the WNV-directed cytolytic response. We hypothesize that this regulatory T cell response sufficiently restrains the immune response such that a chronic infection can be maintained in the CNS. Use of this new mouse model of chronic neuroinvasive virus will be critical in developing improved strategies to prevent prolonged disease in humans.


Subject(s)
T-Lymphocytes, Regulatory/immunology , West Nile Fever/immunology , Animals , Chronic Disease , Disease Models, Animal , Female , Flow Cytometry , Humans , Male , Oligonucleotide Array Sequence Analysis , Polymerase Chain Reaction , West Nile virus/immunology
5.
Genom Data ; 10: 114-117, 2016 Dec.
Article in English | MEDLINE | ID: mdl-27843766

ABSTRACT

Flaviviruses are hematophagous arthropod-viruses that pose global challenges to human health. Like Zika virus, West Nile Virus (WNV) is a flavivirus for which no approved vaccine exists [1]. The role host genetics play in early detection and response to WNV still remains largely unexplained. In order to capture the impact of genetic variation on innate immune responses, we studied gene expression following WNV infection using the collaborative cross (CC). The CC is a mouse genetics resource composed of hundreds of independently bred, octo-parental recombinant inbred mouse lines [2]. To accurately capture the host immune gene expression signatures of West Nile infection, we used the nanostring platform to evaluate expression in spleen tissue isolated from CC mice infected with WNV over a time course of 4, 7, and 12 days' post-infection [3]. Nanostring is a non-amplification based digital method to quantitate gene expression that uses color-coded molecular barcodes to detect hundreds of transcripts in a sample. Using this approach, we identified unique gene signatures in spleen tissue at days 4, 7, and 12 following WNV infection, which delineated distinct differences between asymptomatic and symptomatic CC lines. We also identified novel immune genes. Data was deposited into the Gene Expression Omnibus under accession GSE86000.

6.
Genom Data ; 10: 137-140, 2016 Dec.
Article in English | MEDLINE | ID: mdl-27872814

ABSTRACT

West Nile Virus (WNV) is a mosquito-transmitted virus from the Flaviviridae family that causes fever in 1 in 5 infected people. WNV can also become neuro-invasive and cross the blood-brain barrier leading to severe neurological symptoms in a subset of WNV infected individuals [1]. WNV neuro-invasion is believed to be influenced by a number of factors including host genetics. In order to explore these effects and recapitulate the complex immune genetic differences among individuals, we studied gene expression following WNV infection in the Collaborative Cross (CC) model. The CC is a mouse genetics resource composed of > 70 independently bred, octo-parental recombinant inbred mouse lines [2]. To identify the individual host gene expression signatures influencing protection or susceptibility to WNV disease and WNV neuroinvasion, we used the nanostring nsolver platform to quantify gene expression in brain tissue isolated from WNV-infected CC mice at days 4, 7 and 12 post-infection [3]. This nanostring technology provided a high throughput, non-amplification based mRNA quantitation method to detect immune genes involved in neuro-invasion. Data was deposited into the Gene Expression Omnibus (GEO) under accession GSE85999.

SELECTION OF CITATIONS
SEARCH DETAIL
...