Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
Add more filters










Publication year range
1.
Biotechnol Bioeng ; 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-39014536

ABSTRACT

In vitro transcription (IVT) reaction is an RNA polymerase-catalyzed production of messenger RNA (mRNA) from DNA template, and the unit operation with highest cost of goods in the mRNA drug substance production process. To decrease the cost of mRNA production, reagents should be optimally utilized. Due to the catalytic, multicomponent nature of the IVT reaction, optimization is a multi-factorial problem, ideally suited to design-of-experiment approach for optimization and identification of design space. We derived a data-driven model of the IVT reaction and explored factors that drive process yield (in g/L), including impact of nucleoside triphosphate (NTP) concentration and Mg:NTP ratio on reaction yield and how to optimize the main cost drivers RNA polymerase and DNA template, while minimizing dsRNA formation, a critical quality attribute in mRNA products. We report a methodological approach to derive an optimum reaction design, with which cost efficiency of the reaction was improved by 44%. We demonstrate the validity of the model on mRNA construct of different lengths. Finally, we maximized the yield of the IVT reaction to 24.9 ± 1.5 g/L in batch, thus doubling the highest ever reported IVT yield.

2.
Anal Bioanal Chem ; 416(10): 2389-2398, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38438547

ABSTRACT

The recent clinical success of messenger RNA (mRNA) technology in managing the Covid pandemic has triggered an unprecedented innovation in production and analytical technologies for this therapeutic modality. mRNA is produced by enzymatic transcription of plasmid DNA (pDNA) using polymerase in a cell-free process of in vitro transcription. After transcription, the pDNA is considered a process-related impurity and is removed from the mRNA product enzymatically, chromatographically, or by precipitation. Regulatory requirements are currently set at 10 ng of template pDNA per single human dose, which typically ranges between 30 and 100 µg. Here, we report the development of a generic procedure based on enzymatic digestion and chromatographic separation for the determination of residual pDNA in mRNA samples, with a limit of quantification of 2.3 ng and a limit of detection of less than 0.1 ng. The procedure is based on enzymatic degradation of mRNA and anion exchange HPLC separation, followed by quantification of residual pDNA with a chromatographic method that is already widely adopted for pDNA quality analytics. The procedure has been successfully applied for in-process monitoring of three model mRNAs and a self-amplifying RNA (saRNA) and can be considered a generic substitution for qPCR in mRNA in-process control analytical strategy, with added benefits that it is more cost-efficient, faster, and sequence agnostic.


Subject(s)
DNA , RNA , Humans , RNA, Messenger/genetics , Chromatography, High Pressure Liquid/methods , Plasmids/genetics , DNA/genetics
3.
Biotechnol Bioeng ; 121(5): 1739-1749, 2024 May.
Article in English | MEDLINE | ID: mdl-38351874

ABSTRACT

High purity of plasmid DNA (pDNA), particularly in supercoiled isoform (SC), is used for various biopharmaceutical applications, such as a transfecting agent for production of gene therapy viral vectors, for pDNA vaccines, or as a precursor for linearized form that serves as a template for mRNA synthesis. In clinical manufacturing, pDNA is commonly extracted from Escherichia coli cells with alkaline lysis followed by anion exchange chromatography or tangential flow filtration as a capture step for pDNA. Both methods remove a high degree of host cell contaminants but are unable to generically discriminate between SC and open-circular (OC) pDNA isoforms, as well as other DNA impurities, such as genomic DNA (gDNA). Hydrophobic interaction chromatography (HIC) is commonly used as polishing purification for pDNA. We developed HIC-based polishing purification methodology that is highly selective for enrichment of SC pDNA. It is generic with respect to plasmid size, scalable, and GMP compatible. The technique uses ammonium sulfate, a kosmotropic salt, at a concentration selective for SC pDNA binding to a butyl monolith column, while OC pDNA and gDNA are removed in flow-through. The approach is validated on multiple adeno-associated virus- and mRNA-encoding plasmids ranging from 3 to 12 kbp. We show good scalability to at least 300 mg of >95% SC pDNA, thus paving the way to increase the quality of genomic medicines that utilize pDNA as a key raw material.


Subject(s)
Chromatography , DNA, Superhelical , DNA, Superhelical/genetics , Plasmids/genetics , DNA , Hydrophobic and Hydrophilic Interactions , Escherichia coli/genetics , RNA, Messenger
4.
Electrophoresis ; 44(24): 1978-1988, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37828276

ABSTRACT

Messenger RNA (mRNA) has emerged as a modality with immense therapeutic potential. Recent innovations in production process of mRNA call for procedures to isolate pure mRNA drug substance (DS) with high yield, high capacity, scalability, and compatibility with GMP production systems. Novel RNA modalities, such as circular RNA (circRNA), have further driven the need for non-affinity capture possibilities which are already widely used in the biopharmaceutical industry, for example, in monoclonal antibody processing. The principle that multimodal ion exchange/hydrogen bonding chromatography can be used to separate mRNA from in vitro transcription components has recently been demonstrated. Here, we apply and refine this approach to be suitable for scalable purification of multiple mRNA constructs with sufficient yields, purity, and stability, for use in mRNA production process. Binding capacity of the PrimaS-modified monolithic chromatographic column for mRNA enabled up to 7 mg/mL product isolation in a single chromatographic run, with 98% recovery and room temperature stability of the eGFP mRNA demonstrated for up to 28 days. This approach is independent of construct size or the presence of polyadenylic acid tail and is applicable for capture of a wide variety of RNAs, including mRNA, self-amplifying RNA, circRNA, and with optimization also smaller RNAs such as transfer RNA and others.


Subject(s)
RNA, Circular , RNA , RNA, Messenger/genetics , Chromatography, Ion Exchange/methods , Anions
5.
Int J Mol Sci ; 24(18)2023 Sep 19.
Article in English | MEDLINE | ID: mdl-37762568

ABSTRACT

Messenger RNA (mRNA) is becoming an increasingly important therapeutic modality due to its potential for fast development and platform production. New emerging RNA modalities, such as circular RNA, drive the need for the development of non-affinity purification approaches. Recently, the highly efficient chromatographic purification of mRNA was demonstrated with multimodal monolithic chromatography media (CIM® PrimaS), where efficient mRNA elution was achieved with an ascending pH gradient approach at pH 10.5. Here, we report that a newly developed chromatographic material enables the elution of mRNA at neutral pH and room temperature. This material demonstrates weak anion-exchanging properties and an isoelectric point of 5.3. It enables the baseline separation of mRNA (at least up to 10,000 nucleotides (nt) in size) from parental plasmid DNA (regardless of isoform composition) with both a NaCl gradient and ascending pH gradient approach, while mRNA elution is achieved in a pH range of 5-7. In addition, the basic structure of the novel material is a chromatographic monolith, enabling convection-assisted mass transfer of large RNA molecules to and from the active surface. This facilitates the elution of mRNA in 3-7 column volumes with more than 80% elution recovery and uncompromised integrity. This is demonstrated by the purification of a model mRNA (size 995 nt) from an in vitro transcription reaction mixture. The purified mRNA is stable for at least 34 days, stored in purified H2O at room temperature.


Subject(s)
Chromatography , RNA, Messenger/genetics , Temperature , Plasmids , Hydrogen-Ion Concentration
6.
Biotechnol Bioeng ; 120(3): 737-747, 2023 03.
Article in English | MEDLINE | ID: mdl-36471904

ABSTRACT

The COVID-19 pandemic triggered an unprecedented rate of development of messenger ribonucleic acid (mRNA) vaccines, which are produced by in vitro transcription reactions. The latter has been the focus of intense development to increase productivity and decrease cost. Optimization of in vitro transcription (IVT) depends on understanding the impact of individual reagents on the kinetics of mRNA production and the consumption of building blocks, which is hampered by slow, low-throughput, end-point analytics. We implemented a workflow based on rapid at-line high pressure liquid chromatography (HPLC) monitoring of consumption of nucleoside triphosphates (NTPs) with concomitant production of mRNA, with a sub-3 min read-out, allowing for adjustment of IVT reaction parameters with minimal time lag. IVT was converted to fed-batch resulting in doubling the reaction yield compared to batch IVT protocol, reaching 10 mg/ml for multiple constructs. When coupled with exonuclease digestion, HPLC analytics for quantification of mRNA was extended to monitoring capping efficiency of produced mRNA. When HPLC monitoring was applied to production of an anti-reverse cap analog (ARCA)-capped mRNA construct, which requires an approximate 4:1 ARCA:guanidine triphosphate ratio, the optimized fed-batch approach achieved productivity of 9 mg/ml with 79% capping. The study provides a methodological platform for optimization of factors influencing IVT reactions, converting the reaction from batch to fed-batch mode, determining reaction kinetics, which are critical for optimization of continuous addition of reagents, thus in principle enabling continuous manufacturing of mRNA.


Subject(s)
COVID-19 , Pandemics , Humans , Chromatography, High Pressure Liquid , RNA, Messenger/genetics
7.
Epigenetics ; 16(1): 14-27, 2021 01.
Article in English | MEDLINE | ID: mdl-32609604

ABSTRACT

Post-translational modifications (PTMs) to the tails of the core histone proteins are critically involved in epigenetic regulation. Hypoxia affects histone modifications by altering the activities of histone-modifying enzymes and the levels of hypoxia-inducible factor (HIF) isoforms. Synthetic hypoxia mimetics promote a similar response, but how accurately the hypoxia mimetics replicate the effects of limited oxygen availability on the levels of histone PTMs is uncertain. Here we report studies on the profiling of the global changes to PTMs on intact histones in response to hypoxia/hypoxia-related stresses using liquid chromatography-mass spectrometry (LC-MS). We demonstrate that intact protein LC-MS profiling is a relatively simple and robust method for investigating potential effects of drugs on histone modifications. The results provide insights into the profiles of PTMs associated with hypoxia and inform on the extent to which hypoxia and hypoxia mimetics cause similar changes to histones. These findings imply chemically-induced hypoxia does not completely replicate the substantial effects of physiological hypoxia on histone PTMs, highlighting that caution should be used in interpreting data from their use.


Subject(s)
Cell Hypoxia , Histone Code , HEK293 Cells , HeLa Cells , Histones/metabolism , Humans , Hypoxia-Inducible Factor-Proline Dioxygenases/antagonists & inhibitors , Iron Chelating Agents/toxicity , MCF-7 Cells , Protein Processing, Post-Translational
8.
Extremophiles ; 22(3): 553-562, 2018 May.
Article in English | MEDLINE | ID: mdl-29523972

ABSTRACT

YcfD from Escherichia coli is a homologue of the human ribosomal oxygenases NO66 and MINA53, which catalyse histidyl-hydroxylation of the 60S subunit and affect cellular proliferation (Ge et al., Nat Chem Biol 12:960-962, 2012). Bioinformatic analysis identified a potential homologue of ycfD in the thermophilic bacterium Rhodothermus marinus (ycfDRM). We describe studies on the characterization of ycfDRM, which is a functional 2OG oxygenase catalysing (2S,3R)-hydroxylation of the ribosomal protein uL16 at R82, and which is active at significantly higher temperatures than previously reported for any other 2OG oxygenase. Recombinant ycfDRM manifests high thermostability (Tm 84 °C) and activity at higher temperatures (Topt 55 °C) than ycfDEC (Tm 50.6 °C, Topt 40 °C). Mass spectrometric studies on purified R. marinus ribosomal proteins demonstrate a temperature-dependent variation in uL16 hydroxylation. Kinetic studies of oxygen dependence suggest that dioxygen availability can be a limiting factor for ycfDRM catalysis at high temperatures, consistent with incomplete uL16 hydroxylation observed in R. marinus cells. Overall, the results that extend the known range of ribosomal hydroxylation, reveal the potential for ycfD-catalysed hydroxylation to be regulated by temperature/dioxygen availability, and that thermophilic 2OG oxygenases are of interest from a biocatalytic perspective.


Subject(s)
Escherichia coli Proteins/metabolism , Mixed Function Oxygenases/metabolism , Rhodothermus/enzymology , Ribosomal Proteins/metabolism , Enzyme Stability , Escherichia coli Proteins/chemistry , Escherichia coli Proteins/genetics , Hydroxylation , Mixed Function Oxygenases/chemistry , Mixed Function Oxygenases/genetics , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Rhodothermus/genetics , Ribosomal Proteins/chemistry , Ribosomal Proteins/genetics , Sequence Homology
9.
J Chromatogr A ; 1414: 103-9, 2015 Oct 02.
Article in English | MEDLINE | ID: mdl-26319374

ABSTRACT

Sample displacement chromatography (SDC) is a chromatographic technique that utilises different relative binding affinities of components in a sample mixture and has been widely studied in the context of peptide and protein purification. Here, we report a use of SDC to separate plasmid DNA (pDNA) isoforms under overloading conditions, where supercoiled (sc) isoform acts as a displacer of open circular (oc) or linear isoform. Since displacement is more efficient when mass transfer between stationary and mobile chromatographic phases is not limited by diffusion, we investigated convective interaction media (CIM) monoliths as stationary phases for pDNA isoform separation. CIM monoliths with different hydrophobicities and thus different binding affinities for pDNA (CIM C4 HLD, CIM-histamine and CIM-pyridine) were tested under hydrophobic interaction chromatography (HIC) conditions. SD efficiency for pDNA isoform separation was shown to be dependent on column selectivity for individual isoform, column efficiency and on ammonium sulfate (AS) concentration in loading buffer (binding strength). SD and negative mode elution often operate in parallel, therefore negative mode elution additionally influences the efficiency of the overall purification process. Optimisation of chromatographic conditions achieved 98% sc pDNA homogeneity and a dynamic binding capacity of over 1mg/mL at a relatively low concentration of AS. SDC was successfully implemented for the enrichment of sc pDNA for plasmid vectors of different sizes, and for separation of linear and and sc isoforms, independently of oc:sc isoform ratio, and flow-rate used. This study therefore identifies SDC as a promising new approach to large-scale pDNA purification, which is compatible with continuous, multicolumn chromatography systems, and could therefore be used to increase productivity of pDNA production in the future.


Subject(s)
DNA, Circular/isolation & purification , Ammonium Sulfate , Buffers , Chromatography, Affinity/methods , DNA, Superhelical/isolation & purification , Hydrophobic and Hydrophilic Interactions , Plasmids
10.
Phytochemistry ; 117: 456-461, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26196940

ABSTRACT

2-Oxoglutarate (2OG) and ferrous iron dependent oxygenases are involved in many biological processes in organisms ranging from humans (where some are therapeutic targets) to plants. These enzymes are of significant biomedicinal interest because of their roles in hypoxic signaling and epigenetic regulation. Synthetic N-oxalylglycine (NOG) has been identified as a broad-spectrum 2OG oxygenase inhibitor and is currently widely used in studies on the hypoxic response and chromatin modifications in animals. We report the identification of NOG as a natural product present in Rheum rhabarbarum (rhubarb) and Spinach oleracea (spinach) leaves; NOG was not observed in Escherchia coli or human embryonic kidney cells (HEK 293T). The finding presents the possibility that NOG plays a natural role in regulating gene expression by inhibiting 2OG dependent oxygenases. This has significance because tricarboxylic acid cycle (TCA) intermediate inhibition of 2OG dependent oxygenases has attracted major interest in cancer research.


Subject(s)
Amino Acids, Dicarboxylic/isolation & purification , Plant Leaves/chemistry , Rheum/chemistry , Spinacia oleracea/chemistry , Alanine/analogs & derivatives , Alanine/chemistry , Alanine/isolation & purification , Amino Acids, Dicarboxylic/chemistry , Amino Acids, Dicarboxylic/pharmacology , Brassica/chemistry , Chromatography, Liquid/methods , Enzyme Inhibitors/isolation & purification , Enzyme Inhibitors/pharmacology , Escherichia coli/chemistry , HEK293 Cells/chemistry , Humans , Ketoglutaric Acids/metabolism , Magnetic Resonance Spectroscopy , Oxygenases/antagonists & inhibitors , Tandem Mass Spectrometry
11.
Eur J Med Chem ; 94: 509-16, 2015 Apr 13.
Article in English | MEDLINE | ID: mdl-25023609

ABSTRACT

Protein-protein interactions between the hypoxia inducible factor (HIF) and the transcriptional coactivators p300/CBP are potential cancer targets due to their role in the hypoxic response. A natural product based screen led to the identification of indandione and benzoquinone derivatives that reduce the tight interaction between a HIF-1α fragment and the CH1 domain of p300. The indandione derivatives were shown to fragment to give ninhydrin, which was identified as the active species. Both the naphthoquinones and ninhydrin were observed to induce Zn(II) ejection from p300 and the catalytic domain of the histone demethylase KDM4A. Together with previous reports on the effects of related compounds on HIF-1α and other systems, the results suggest that care should be taken in interpreting biological results obtained with highly electrophilic/thiol modifying compounds.


Subject(s)
E1A-Associated p300 Protein/metabolism , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Indans/pharmacology , Organometallic Compounds/pharmacology , Quinones/pharmacology , Zinc/pharmacology , Dose-Response Relationship, Drug , Humans , Indans/chemistry , Models, Molecular , Molecular Structure , Organometallic Compounds/chemical synthesis , Organometallic Compounds/chemistry , Protein Binding/drug effects , Quinones/chemistry , Structure-Activity Relationship , Zinc/chemistry
12.
Nature ; 510(7505): 422-426, 2014 Jun 19.
Article in English | MEDLINE | ID: mdl-24814345

ABSTRACT

2-Oxoglutarate (2OG)-dependent oxygenases have important roles in the regulation of gene expression via demethylation of N-methylated chromatin components and in the hydroxylation of transcription factors and splicing factor proteins. Recently, 2OG-dependent oxygenases that catalyse hydroxylation of transfer RNA and ribosomal proteins have been shown to be important in translation relating to cellular growth, TH17-cell differentiation and translational accuracy. The finding that ribosomal oxygenases (ROXs) occur in organisms ranging from prokaryotes to humans raises questions as to their structural and evolutionary relationships. In Escherichia coli, YcfD catalyses arginine hydroxylation in the ribosomal protein L16; in humans, MYC-induced nuclear antigen (MINA53; also known as MINA) and nucleolar protein 66 (NO66) catalyse histidine hydroxylation in the ribosomal proteins RPL27A and RPL8, respectively. The functional assignments of ROXs open therapeutic possibilities via either ROX inhibition or targeting of differentially modified ribosomes. Despite differences in the residue and protein selectivities of prokaryotic and eukaryotic ROXs, comparison of the crystal structures of E. coli YcfD and Rhodothermus marinus YcfD with those of human MINA53 and NO66 reveals highly conserved folds and novel dimerization modes defining a new structural subfamily of 2OG-dependent oxygenases. ROX structures with and without their substrates support their functional assignments as hydroxylases but not demethylases, and reveal how the subfamily has evolved to catalyse the hydroxylation of different residue side chains of ribosomal proteins. Comparison of ROX crystal structures with those of other JmjC-domain-containing hydroxylases, including the hypoxia-inducible factor asparaginyl hydroxylase FIH and histone N(ε)-methyl lysine demethylases, identifies branch points in 2OG-dependent oxygenase evolution and distinguishes between JmjC-containing hydroxylases and demethylases catalysing modifications of translational and transcriptional machinery. The structures reveal that new protein hydroxylation activities can evolve by changing the coordination position from which the iron-bound substrate-oxidizing species reacts. This coordination flexibility has probably contributed to the evolution of the wide range of reactions catalysed by oxygenases.


Subject(s)
Eukaryota/enzymology , Models, Molecular , Oxygenases/chemistry , Prokaryotic Cells/enzymology , Ribosomes/enzymology , Amino Acid Sequence , Catalytic Domain , Conserved Sequence , Eukaryota/classification , Humans , Oxygenases/metabolism , Phylogeny , Prokaryotic Cells/classification , Protein Folding , Protein Structure, Tertiary , Sequence Alignment
13.
Proc Natl Acad Sci U S A ; 111(11): 4031-6, 2014 Mar 18.
Article in English | MEDLINE | ID: mdl-24550447

ABSTRACT

2-Oxoglutarate (2OG) and Fe(II)-dependent oxygenase domain-containing protein 1 (OGFOD1) is predicted to be a conserved 2OG oxygenase, the catalytic domain of which is related to hypoxia-inducible factor prolyl hydroxylases. OGFOD1 homologs in yeast are implicated in diverse cellular functions ranging from oxygen-dependent regulation of sterol response genes (Ofd1, Schizosaccharomyces pombe) to translation termination/mRNA polyadenylation (Tpa1p, Saccharomyces cerevisiae). However, neither the biochemical activity of OGFOD1 nor the identity of its substrate has been defined. Here we show that OGFOD1 is a prolyl hydroxylase that catalyzes the posttranslational hydroxylation of a highly conserved residue (Pro-62) in the small ribosomal protein S23 (RPS23). Unusually OGFOD1 retained a high affinity for, and forms a stable complex with, the hydroxylated RPS23 substrate. Knockdown or inactivation of OGFOD1 caused a cell type-dependent induction of stress granules, translational arrest, and growth impairment in a manner complemented by wild-type but not inactive OGFOD1. The work identifies a human prolyl hydroxylase with a role in translational regulation.


Subject(s)
Carrier Proteins/metabolism , Nuclear Proteins/metabolism , Prolyl Hydroxylases/metabolism , Protein Biosynthesis/physiology , Protein Processing, Post-Translational/physiology , Ribosomal Proteins/metabolism , Analysis of Variance , Carrier Proteins/genetics , Computational Biology , Fluorescent Antibody Technique , Gene Knockdown Techniques , Humans , Hydroxylation , Immunoblotting , Immunoprecipitation , Ketoglutaric Acids/metabolism , Luciferases , Nuclear Proteins/genetics , Proline/metabolism , Protein Biosynthesis/genetics , Yeasts
14.
Proc Natl Acad Sci U S A ; 111(11): 4019-24, 2014 Mar 18.
Article in English | MEDLINE | ID: mdl-24550462

ABSTRACT

The mechanisms by which gene expression is regulated by oxygen are of considerable interest from basic science and therapeutic perspectives. Using mass spectrometric analyses of Saccharomyces cerevisiae ribosomes, we found that the amino acid residue in closest proximity to the decoding center, Pro-64 of the 40S subunit ribosomal protein Rps23p (RPS23 Pro-62 in humans) undergoes posttranslational hydroxylation. We identify RPS23 hydroxylases as a highly conserved eukaryotic subfamily of Fe(II) and 2-oxoglutarate dependent oxygenases; their catalytic domain is closely related to transcription factor prolyl trans-4-hydroxylases that act as oxygen sensors in the hypoxic response in animals. The RPS23 hydroxylases in S. cerevisiae (Tpa1p), Schizosaccharomyces pombe and green algae catalyze an unprecedented dihydroxylation modification. This observation contrasts with higher eukaryotes, where RPS23 is monohydroxylated; the human Tpa1p homolog OGFOD1 catalyzes prolyl trans-3-hydroxylation. TPA1 deletion modulates termination efficiency up to ∼10-fold, including of pathophysiologically relevant sequences; we reveal Rps23p hydroxylation as its molecular basis. In contrast to most previously characterized accuracy modulators, including antibiotics and the prion state of the S. cerevisiae translation termination factor eRF3, Rps23p hydroxylation can either increase or decrease translational accuracy in a stop codon context-dependent manner. We identify conditions where Rps23p hydroxylation status determines viability as a consequence of nonsense codon suppression. The results reveal a direct link between oxygenase catalysis and the regulation of gene expression at the translational level. They will also aid in the development of small molecules altering translational accuracy for the treatment of genetic diseases linked to nonsense mutations.


Subject(s)
Protein Biosynthesis/physiology , Protein Processing, Post-Translational/physiology , Ribosomal Proteins/metabolism , Ribosomes/physiology , Chlorophyta , Codon, Terminator/genetics , Humans , Hydroxylation , Mass Spectrometry , Oxygenases/genetics , Oxygenases/metabolism , Ribosomes/metabolism , Saccharomyces cerevisiae , Schizosaccharomyces , Species Specificity
15.
Proc Natl Acad Sci U S A ; 111(11): 4025-30, 2014 Mar 18.
Article in English | MEDLINE | ID: mdl-24550463

ABSTRACT

Genome sequences predict the presence of many 2-oxoglutarate (2OG)-dependent oxygenases of unknown biochemical and biological functions in Drosophila. Ribosomal protein hydroxylation is emerging as an important 2OG oxygenase catalyzed pathway, but its biological functions are unclear. We report investigations on the function of Sudestada1 (Sud1), a Drosophila ribosomal oxygenase. As with its human and yeast homologs, OGFOD1 and Tpa1p, respectively, we identified Sud1 to catalyze prolyl-hydroxylation of the small ribosomal subunit protein RPS23. Like OGFOD1, Sud1 catalyzes a single prolyl-hydroxylation of RPS23 in contrast to yeast Tpa1p, where Pro-64 dihydroxylation is observed. RNAi-mediated Sud1 knockdown hinders normal growth in different Drosophila tissues. Growth impairment originates from both reduction of cell size and diminution of the number of cells and correlates with impaired translation efficiency and activation of the unfolded protein response in the endoplasmic reticulum. This is accompanied by phosphorylation of eIF2α and concomitant formation of stress granules, as well as promotion of autophagy and apoptosis. These observations, together with those on enzyme homologs described in the companion articles, reveal conserved biochemical and biological roles for a widely distributed ribosomal oxygenase.


Subject(s)
Drosophila Proteins/metabolism , Drosophila/enzymology , Homeostasis/physiology , Prolyl Hydroxylases/metabolism , Protein Biosynthesis/physiology , Ribosomal Proteins/metabolism , Animals , Animals, Genetically Modified , Apoptosis/genetics , Autophagy/genetics , Blotting, Western , Body Weights and Measures , Chromatography, Liquid , DNA Primers/genetics , Drosophila Proteins/genetics , Fat Body/cytology , Female , Gene Knockdown Techniques , Hydroxylation , Prolyl Hydroxylases/genetics , Protein Processing, Post-Translational/physiology , RNA Interference , Real-Time Polymerase Chain Reaction , Ribosomal Proteins/genetics , Tandem Mass Spectrometry , Unfolded Protein Response/genetics
16.
Nat Chem Biol ; 8(12): 960-962, 2012 Dec.
Article in English | MEDLINE | ID: mdl-23103944

ABSTRACT

The finding that oxygenase-catalyzed protein hydroxylation regulates animal transcription raises questions as to whether the translation machinery and prokaryotic proteins are analogously modified. Escherichia coli ycfD is a growth-regulating 2-oxoglutarate oxygenase catalyzing arginyl hydroxylation of the ribosomal protein Rpl16. Human ycfD homologs, Myc-induced nuclear antigen (MINA53) and NO66, are also linked to growth and catalyze histidyl hydroxylation of Rpl27a and Rpl8, respectively. This work reveals new therapeutic possibilities via oxygenase inhibition and by targeting modified over unmodified ribosomes.


Subject(s)
Escherichia coli Proteins/metabolism , Mixed Function Oxygenases/metabolism , Oxygenases/metabolism , Prokaryotic Cells/metabolism , Ribosomes/metabolism , Animals , Arginine/metabolism , Chromosomal Proteins, Non-Histone/metabolism , Dioxygenases , Enzyme Inhibitors/pharmacology , Escherichia coli/metabolism , Escherichia coli Proteins/antagonists & inhibitors , Histidine/metabolism , Histone Demethylases , Humans , Hydroxylation , Magnetic Resonance Spectroscopy , Mixed Function Oxygenases/antagonists & inhibitors , Nuclear Proteins/metabolism , Oxygenases/antagonists & inhibitors , Ribosomal Proteins/metabolism
17.
EMBO Rep ; 13(3): 251-7, 2012 Mar 01.
Article in English | MEDLINE | ID: mdl-22310300

ABSTRACT

Hypoxic and oxidant stresses can coexist in biological systems, and oxidant stress has been proposed to activate hypoxia pathways through the inactivation of the 'oxygen-sensing' hypoxia-inducible factor (HIF) prolyl and asparaginyl hydroxylases. Here, we show that despite reduced sensitivity to cellular hypoxia, the HIF asparaginyl hydroxylase--known as FIH, factor inhibiting HIF--is strikingly more sensitive to peroxide than the HIF prolyl hydroxylases. These contrasting sensitivities indicate that oxidant stress is unlikely to signal hypoxia directly to the HIF system, but that hypoxia and oxidant stress can interact functionally as distinct regulators of HIF transcriptional output.


Subject(s)
Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Mixed Function Oxygenases/metabolism , Peroxides/metabolism , Repressor Proteins/metabolism , Cell Hypoxia/genetics , Cell Line , Cysteine/metabolism , Gene Expression Regulation/drug effects , Humans , Hydroxylation/drug effects , Mixed Function Oxygenases/antagonists & inhibitors , Peroxides/pharmacology , Repressor Proteins/antagonists & inhibitors , Transcription, Genetic
18.
Metallomics ; 2(6): 397-9, 2010 Jun.
Article in English | MEDLINE | ID: mdl-21072385

ABSTRACT

2-Oxoglutarate oxygenases are inhibited by a range of transition metals, as exemplified by studies on human histone demethylases and prolyl hydroxylase domain 2 (PHD2 or EGLN1). The biological effects associated with 2-oxoglutarate oxygenase inhibition may result from inhibition of more than one enzyme and by mechanisms in addition to simple competition with the Fe(ii) cofactor.


Subject(s)
Coenzymes/pharmacology , Enzyme Activation/drug effects , Ketoglutaric Acids , Oxygenases/antagonists & inhibitors , Transition Elements/pharmacology , Binding, Competitive , Histone Demethylases/antagonists & inhibitors , Humans , Inhibitory Concentration 50 , Ketoglutaric Acids/antagonists & inhibitors , Procollagen-Proline Dioxygenase/antagonists & inhibitors
19.
Chem Commun (Camb) ; (42): 6376-8, 2009 Nov 14.
Article in English | MEDLINE | ID: mdl-19841782

ABSTRACT

JMJD2A, a 2-oxoglutarate dependent N(epsilon)-methyl lysine histone demethylase, is inhibited by disruption of its Zn-binding site by Zn-ejecting compounds including disulfiram and ebselen; this observation may enable the development of inhibitors selective for this subfamily of 2OG dependent oxygenases that do not rely on binding to the highly-conserved Fe(ii)-containing active site.


Subject(s)
Jumonji Domain-Containing Histone Demethylases/metabolism , Zinc/chemistry , Azoles/chemistry , Binding Sites , Catalytic Domain , Crystallography, X-Ray , Disulfiram/chemistry , Isoindoles , Jumonji Domain-Containing Histone Demethylases/antagonists & inhibitors , Organoselenium Compounds/chemistry , Selenium/chemistry , Spectrometry, Mass, Electrospray Ionization
SELECTION OF CITATIONS
SEARCH DETAIL
...