Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
J Dairy Sci ; 106(12): 8926-8941, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37678793

ABSTRACT

The longevity of dairy cows is mainly determined by farmers' subjective culling decisions and can be linked to the environmental impact of dairy production and to the social acceptance of the industry. Still, the economic impacts of dairy cow longevity are not well understood. The aim of this study was to examine how herd average dairy cow longevity is related to the farm economic outcome. We used 3 indicators of economic outcome: technical efficiency, profitability, and average milk yield per cow. We used 2 indicators of dairy cow longevity: average herd length of life and average herd length of productive life. The study was based on a unique and detailed dataset from Swedish dairy agriculture, where herd-management data from the national dairy herd recording scheme were combined with farm-level economic variables from the Swedish Farm Accountancy Survey, for a total of 1,959 observations from 2010 to 2018. The regression results highlight that both measures of average herd dairy cow longevity have an overall positive and significant association with farm-level economic performance. These associations had an inverted U-shape, which implies that the association is first positive and then declines. Descriptive statistics indicate that the point where the maximum economic performance is attained varied across the economic indicators. Our results are relevant for individual dairy farmers and their advisors, who are interested in understanding how herd average longevity relates to economic performance on the farms. Our results are also important from a greater sustainability perspective, because linking them to previous knowledge about the environmental and social sustainability benefits of keeping cows longer highlights longevity-associated trade-offs between those benefits and the farm economic outcomes.


Subject(s)
Dairying , Longevity , Female , Cattle , Animals , Farms , Sweden , Dairying/methods , Milk
2.
Oncogene ; 32(31): 3616-26, 2013 Aug 01.
Article in English | MEDLINE | ID: mdl-22907436

ABSTRACT

Embryonal cancer can arise from postnatally persistent embryonal remnant or rest cells, which are uniquely characterized by the absence of p53 mutations. Perinatal overexpression of the MycN oncoprotein in embryonal cancer precursor cells causes postnatal rests, and later tumor formation through unknown mechanisms. However, overexpression of Myc in adult tissues normally activates apoptosis and/or senescence signals as an organismal defense mechanism against cancer. Here, we show that perinatal neuroblastoma precursor cells exhibited a transiently diminished p53 response to MycN oncoprotein stress and resistance to trophic factor withdrawal, compared with their adult counterpart cells from the TH-MYCN(+/+) transgenic mouse model of neuroblastoma. The adult stem cell maintenance factor and Polycomb group protein, Bmi1 (B-cell-specific Moloney murine leukemia virus integration site), had a critical role at neuroblastoma initiation in the model, by repressing p53 responses in precursor cells. We further show in neuroblastoma tumor cells that Bmi1 could directly bind p53 in a complex with other Polycomb complex proteins, Ring1A or Ring1B, leading to increased p53 ubiquitination and degradation. Repressed p53 signal responses were also seen in precursor cells for other embryonal cancer types, medulloblastoma and acute lymphoblastic leukemia. Collectively, these date indicate a general mechanism for p53 inactivation in some embryonal cell types and consequent susceptibility to MycN oncogenesis at the point of embryonal tumor initiation.


Subject(s)
Neoplasms, Germ Cell and Embryonal/pathology , Neoplastic Stem Cells/pathology , Nuclear Proteins/metabolism , Oncogene Proteins/metabolism , Polycomb Repressive Complex 1/metabolism , Proto-Oncogene Proteins/metabolism , Stress, Physiological , Tumor Suppressor Protein p53/chemistry , Tumor Suppressor Protein p53/metabolism , Animals , Apoptosis , Cell Line, Tumor , Cyclin-Dependent Kinase Inhibitor p16/metabolism , Humans , Leukemia/metabolism , Leukemia/pathology , Medulloblastoma/metabolism , Medulloblastoma/pathology , Mice , N-Myc Proto-Oncogene Protein , Neoplasms, Germ Cell and Embryonal/metabolism , Neoplastic Stem Cells/metabolism , Neuroblastoma/metabolism , Neuroblastoma/pathology , Polyubiquitin/metabolism , Proteasome Endopeptidase Complex/metabolism , Protein Stability , Proteolysis , Proto-Oncogene Proteins c-mdm2/metabolism , Signal Transduction , Ubiquitination
3.
Oncogene ; 29(46): 6172-83, 2010 Nov 18.
Article in English | MEDLINE | ID: mdl-20729920

ABSTRACT

The family of tripartite-motif (TRIM) proteins are involved in diverse cellular processes, but are often characterized by critical protein-protein interactions necessary for their function. TRIM16 is induced in different cancer types, when the cancer cell is forced to proceed down a differentiation pathway. We have identified TRIM16 as a DNA-binding protein with histone acetylase activity, which is required for the retinoic acid receptor ß(2) transcriptional response in retinoid-treated cancer cells. In this study, we show that overexpressed TRIM16 reduced neuroblastoma cell growth, enhanced retinoid-induced differentiation and reduced tumourigenicity in vivo. TRIM16 was only expressed in the differentiated ganglion cell component of primary human neuroblastoma tumour tissues. TRIM16 bound directly to cytoplasmic vimentin and nuclear E2F1 in neuroblastoma cells. TRIM16 reduced cell motility and this required downregulation of vimentin. Retinoid treatment and enforced overexpression caused TRIM16 to translocate to the nucleus, and bind to and downregulate nuclear E2F1, required for cell replication. This study, for the first time, demonstrates that TRIM16 acts as a tumour suppressor, affecting neuritic differentiation, cell migration and replication through interactions with cytoplasmic vimentin and nuclear E2F1 in neuroblastoma cells.


Subject(s)
DNA-Binding Proteins/physiology , E2F1 Transcription Factor/antagonists & inhibitors , Neuroblastoma/pathology , Transcription Factors/physiology , Tumor Suppressor Proteins/physiology , Vimentin/antagonists & inhibitors , Animals , Cell Differentiation , Cell Movement , Cell Nucleus/metabolism , Cytoplasm/metabolism , E2F1 Transcription Factor/metabolism , Female , Humans , Mice , Mice, Inbred BALB C , Tripartite Motif Proteins , Ubiquitin-Protein Ligases , Vimentin/physiology
4.
Oncogene ; 29(44): 5957-68, 2010 Nov 04.
Article in English | MEDLINE | ID: mdl-20697349

ABSTRACT

Myc oncoproteins and histone deacetylases (HDACs) modulate gene transcription and enhance cancer cell proliferation, and HDAC inhibitors are among the most promising new classes of anticancer drugs. Here, we show that N-Myc and c-Myc upregulated HDAC2 gene expression in neuroblastoma and pancreatic cancer cells, respectively, which contributed to N-Myc- and c-Myc-induced cell proliferation. Cyclin G2 (CCNG2) was commonly repressed by N-Myc and HDAC2 in neuroblastoma cells and by c-Myc and HDAC2 in pancreatic cancer cells, and could be reactivated by HDAC inhibitors. 5-bromo-2'-deoxyuridine incorporation assays showed that transcriptional repression of CCNG2 was, in part, responsible for N-Myc-, c-Myc- and HDAC2-induced cell proliferation. Dual crosslinking chromatin immunoprecipitation assay demonstrated that N-Myc acted as a transrepressor by recruiting the HDAC2 protein to Sp1-binding sites at the CCNG2 gene core promoter. Moreover, HDAC2 was upregulated, and CCNG2 downregulated, in pre-cancerous and neuroblastoma tissues from N-Myc transgenic mice, and c-Myc overexpression correlated with upregulation of HDAC2 and repression of CCNG2 in tumour tissues from pancreatic cancer patients. Taken together, our data indicate the critical roles of upregulation of HDAC2 and suppression of CCNG2 in Myc-induced oncogenesis, and have significant implications for the application of HDAC inhibitors in the prevention and treatment of Myc-driven cancers.


Subject(s)
Histone Deacetylase 2/genetics , Proto-Oncogene Proteins c-myc/physiology , Transcription, Genetic , Up-Regulation , Animals , Base Sequence , Cell Line, Tumor , Cell Proliferation , Chromatin Immunoprecipitation , Cyclin G2/genetics , DNA Primers , Humans , Mice , Mice, Transgenic , Neuroblastoma/pathology , Pancreatic Neoplasms/pathology , Reverse Transcriptase Polymerase Chain Reaction
5.
Oncogene ; 28(13): 1605-15, 2009 Apr 02.
Article in English | MEDLINE | ID: mdl-19234491

ABSTRACT

Medulloblastoma tumorigenesis caused by inactivating mutations in the PATCHED1 (PTCH1) gene is initiated by persistently activated Sonic Hedgehog (Shh) signaling in granule neuron precursors (GNPs) during the late stages of cerebellar development. Both normal cerebellar development and Shh-driven medulloblastoma tumorigenesis require N-Myc expression. However, the mechanisms by which N-Myc affects the stages of medulloblastoma initiation and progression are unknown. Here we used a mouse model of Ptch1 heterozygosity and medulloblastoma to show that increased N-Myc expression characterized the earliest selection of focal GNP hyperplasia destined for later tumor progression. Step-wise loss of Ptch1 expression, from tumor initiation to progression, led to incremental increases in N-Myc protein, rather than mRNA, expression. Increased N-Myc resulted in enhanced proliferation and death resistance of perinatal GNPs at tumor initiation. Sequential N-Myc protein phosphorylation at serine-62 and serine-62/threonine-58 characterized the early and late stages of medulloblastoma tumorigenesis, respectively. Shh pathway activation led to increased Myc protein stability and reduced expression of key regulatory factors. Taken together our data identify N-Myc protein stability as the result of loss of Ptch1, which distinguishes normal cerebellar development from medulloblastoma tumorigenesis.


Subject(s)
Cerebellar Neoplasms/genetics , Cerebellar Neoplasms/pathology , Medulloblastoma/genetics , Medulloblastoma/pathology , Proto-Oncogene Proteins c-myc/metabolism , Receptors, Cell Surface/genetics , Animals , Cell Transformation, Neoplastic/genetics , Cell Transformation, Neoplastic/metabolism , Cerebellar Neoplasms/metabolism , Disease Progression , Gene Deletion , Gene Expression Regulation, Neoplastic , Hedgehog Proteins/metabolism , Medulloblastoma/metabolism , Mice , Mice, Transgenic , Models, Biological , NIH 3T3 Cells , Patched Receptors , Patched-1 Receptor , Protein Stability , Proto-Oncogene Proteins c-myc/genetics , Receptors, Cell Surface/physiology , Signal Transduction/genetics
6.
Br J Cancer ; 100(1): 96-105, 2009 Jan 13.
Article in English | MEDLINE | ID: mdl-19127267

ABSTRACT

Increased retinoic acid receptor beta (RARbeta(2)) gene expression is a hallmark of cancer cell responsiveness to retinoid anticancer effects. Moreover, low basal or induced RARbeta(2) expression is a common feature of many human cancers, suggesting that RARbeta(2) may act as a tumour suppressor gene in the absence of supplemented retinoid. We have previously shown that low RARbeta(2) expression is a feature of advanced neuroblastoma. Here, we demonstrate that the ABC domain of the RARbeta(2) protein alone was sufficient for the growth inhibitory effects of RARbeta(2) on neuroblastoma cells. ATP7A, the copper efflux pump, is a retinoid-responsive gene, was upregulated by ectopic overexpression of RARbeta(2). The ectopic overexpression of the RARbeta(2) ABC domain was sufficient to induce ATP7A expression, whereas, RARbeta(2) siRNA blocked the induction of ATP7A expression in retinoid-treated neuroblastoma cells. Forced downregulation of ATP7A reduced copper efflux and increased viability of retinoid-treated neuroblastoma cells. Copper supplementation enhanced cell growth and reduced retinoid-responsiveness, whereas copper chelation reduced the viability and proliferative capacity. Taken together, our data demonstrates ATP7A expression is regulated by retinoic acid receptor beta and it has effects on intracellular copper levels, revealing a link between the anticancer action of retinoids and copper metabolism.


Subject(s)
Adenosine Triphosphatases/physiology , Cation Transport Proteins/physiology , Neuroblastoma/drug therapy , Receptors, Retinoic Acid/physiology , Adenosine Triphosphatases/genetics , Cation Transport Proteins/genetics , Cell Line, Tumor , Cell Proliferation , Copper/metabolism , Copper-Transporting ATPases , Gene Expression Regulation, Neoplastic , Humans , Neuroblastoma/pathology , Retinoids/pharmacology , Retinoids/therapeutic use
7.
Carcinogenesis ; 27(11): 2157-69, 2006 Nov.
Article in English | MEDLINE | ID: mdl-16704991

ABSTRACT

Melanotransferrin (MTf) or melanoma tumor antigen p97 is an iron (Fe) binding transferrin homolog expressed highly on melanomas and at lower levels on normal tissues. It has been suggested that MTf is involved in a variety of processes such as Fe metabolism and cellular differentiation. Considering the crucial role of Fe in many metabolic pathways, for example, DNA synthesis, it is important to understand the function of MTf. To define the roles of MTf, two models were developed: (i) an MTf knockout (MTf-/-) mouse and (ii) downregulation of MTf expression in melanoma cells by post-transcriptional gene silencing (PTGS). Examination of the MTf-/- mice demonstrated no differences compared with wild-type littermates. However, microarray analysis showed differential expression of molecules involved in proliferation such as Mef2a, Tcf4, Gls and Apod in MTf-/- mice compared with MTf+/+ littermates. Considering the role of MTf in melanoma cells, PTGS was used to downregulate MTf mRNA and protein levels by >90 and >80%, respectively. This resulted in inhibition of proliferation and migration. As found in MTf-/- mice, in melanoma cells with suppressed MTf expression, hMEF2A and hTCF4 were upregulated compared with parental cells. Furthermore, when melanoma cells with decreased MTf expression were injected into nude mice, tumor growth was markedly reduced, suggesting a role for MTf in proliferation and tumorigenesis.


Subject(s)
Cell Transformation, Neoplastic , Gene Expression Regulation, Neoplastic , Melanoma/pathology , Neoplasm Proteins/physiology , Animals , Antigens, Neoplasm , Cell Proliferation , Copper/chemistry , Female , Humans , Iron/chemistry , Iron/metabolism , Male , Melanoma-Specific Antigens , Mice , Mice, Inbred C57BL , Neoplasm Proteins/metabolism , Neoplasm Transplantation , RNA Processing, Post-Transcriptional , Zinc/chemistry
8.
Biochim Biophys Acta ; 1722(2): 131-42, 2005 Mar 11.
Article in English | MEDLINE | ID: mdl-15716025

ABSTRACT

Melanotransferrin (MTf) is a transferrin homologue initially identified in melanoma cells. Serum transferrin (Tf) contains two iron (Fe)-binding sites and plays a vital role in Fe transport. However, human MTf has only a single, high affinity, Fe-binding site. Furthermore, while isolated MTf can bind Fe, it plays little role in Fe uptake by cells and its function remains elusive. To further understand the biological role of this molecule, we examined the expression profile of mouse MTf (mMTf) and human MTf (hMTf) and the splice variant of the latter. Analysis of mMTf in 18 normal mouse tissues and 4 embryonic stages (7-17 days) using an RNA dot blot demonstrated it was expressed at high levels in the pancreas, salivary gland and epididymis of the adult, while embryonic tissues showed low expression. The expression pattern was very different from that of mouse transferrin receptor 1 (TfR1) mRNA, which was found at high levels in the spleen and embryo. Using the more sensitive RT-PCR technique, mMTf expression was demonstrated across all 24 normal mouse tissues assessed. Analysis of the mMTf genomic sequence predicted only one mMTf transcript, although two putative transcripts were found in the testis using Northern blotting. An alternate hMTf transcript, h delta MTf, has been identified by others, although its tissue distribution was not previously examined. In human heart and skeletal muscle, three putative hMTf transcripts were identified at approximately 2, 3 and 4 kb, the smallest transcript being consistent with h delta MTf. The two larger transcripts were also found in 10 other human tissues. The h delta MTf transcript was detected using RT-PCR and Southern blotting in tumour-derived cell lines, with the highest expression being identified in melanoma cells. Immunohistochemistry showed that hMTf was expressed primarily within epithelia. In fact, the most pronounced expression was within the epidermis of the skin, tubules of the kidney and the ducts of sweat and salivary glands. The distribution of MTf and its splice variants may provide clues to their possible biological roles.


Subject(s)
Neoplasm Proteins/analysis , Alternative Splicing , Animals , Antigens, Neoplasm , Antigens, Surface/analysis , Breast Neoplasms , Cell Line, Tumor , Female , Humans , Jurkat Cells , Melanoma/immunology , Melanoma-Specific Antigens , Mice , Neoplasm Proteins/genetics , Neuroectodermal Tumors, Primitive, Peripheral , Organ Specificity , Species Specificity
9.
FEBS Lett ; 483(1): 11-6, 2000 Oct 13.
Article in English | MEDLINE | ID: mdl-11033347

ABSTRACT

Melanotransferrin (MTf) is a membrane-bound transferrin (Tf) homologue that is found at high levels in melanoma cells. MTf has many characteristics in common with serum Tf and previous studies have shown that it can bind Fe. This has led to speculation that MTf may be involved in Fe transport. Because Fe is required for a variety of metabolic reactions including ATP and DNA synthesis, MTf could play a role in proliferation. However, recently it has been shown that MTf plays very little role in Fe uptake by melanoma cells, and unlike other Fe transport molecules (e.g. the transferrin receptor), its expression is not controlled by Fe. In the present review the function of MTf is discussed in relation to data suggesting other roles apart from Fe uptake.


Subject(s)
Membrane Proteins/physiology , Neoplasm Proteins/physiology , Transferrin/physiology , Amino Acid Sequence , Animals , Antigens, Neoplasm , Biological Transport , Humans , Iron/metabolism , Melanoma-Specific Antigens , Models, Biological
10.
J Biol Chem ; 273(8): 4470-7, 1998 Feb 20.
Article in English | MEDLINE | ID: mdl-9468500

ABSTRACT

Arginine deiminase (EC 3.5.3.6) catalyzes the irreversible catabolism of arginine to citrulline in the arginine dihydrolase pathway. This pathway has been regarded as restricted to prokaryotic organisms but is an important source of energy to the primitive protozoan Giardia intestinalis. In this paper we report the cloning and expression of the arginine deiminase gene from this parasite. Degenerate oligonucleotides based on amino acid sequences of tryptic peptides from the purified protein were used to amplify a portion of the arginine deiminase gene. This was then used as a probe to screen HindIII and PstI "mini" libraries to obtain two overlapping clones that contained the arginine deiminase gene. The open reading frame encoded 581 amino acids including all of the tryptic peptides that were sequenced and corresponded to a molecular mass of 67 kDa. Northern blot analysis identified a single 1.8-kilobase transcript in both trophozoites and encysting cells. Arginine deiminase was successfully expressed in Escherichia coli and purified to homogeneity. The recombinant protein was found to have characteristics comparable with those of the native enzyme.


Subject(s)
Giardia lamblia/enzymology , Hydrolases/genetics , Amino Acid Sequence , Animals , Base Sequence , Blotting, Northern , Chromosome Mapping , Cloning, Molecular , DNA, Protozoan , Gene Amplification , Hydrolases/chemistry , Molecular Sequence Data , Peptide Mapping , Sequence Homology, Amino Acid , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
SELECTION OF CITATIONS
SEARCH DETAIL
...