Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
Add more filters










Publication year range
1.
Phys Rev Lett ; 131(12): 126502, 2023 Sep 22.
Article in English | MEDLINE | ID: mdl-37802946

ABSTRACT

Environment-induced localization transitions (LT) occur when a small quantum system interacts with a bath of harmonic oscillators. At equilibrium, LTs are accompanied by an entropy change, signaling the loss of coherence. Despite extensive efforts, equilibrium LTs have yet to be observed. Here, we demonstrate that ongoing experiments on double quantum dots that measure entropy using a nearby quantum point contact realize the celebrated spin-boson model and allow to measure the entropy change of its LT. We find a Kosterlitz-Thouless flow diagram, leading to a universal jump in the spin-bath interaction, reflected in a discontinuity in the zero temperature QPC conductance.

2.
Phys Rev Lett ; 131(1): 016601, 2023 Jul 07.
Article in English | MEDLINE | ID: mdl-37478453

ABSTRACT

Topological entanglement entropy (TEE) is a key diagnostic of topological order, allowing one to detect the presence of Abelian or non-Abelian anyons. However, there are currently no experimentally feasible protocols to measure TEE in condensed matter systems. Here, we propose a scheme to measure the TEE of chiral topological phases, carrying protected edge states, based on a nontrivial connection with the thermodynamic entropy change occurring in a quantum point contact (QPC) as it pinches off the topological liquid into two. We show how this entropy change can be extracted using Maxwell relations from charge detection of a nearby quantum dot. We demonstrate this explicitly for the Abelian Laughlin states, using an exact solution of the sine-Gordon model describing the universal crossover in the QPC. Our approach might open a new thermodynamic detection scheme of topological states also with non-Abelian statistics.

3.
Phys Rev Lett ; 130(13): 136201, 2023 Mar 31.
Article in English | MEDLINE | ID: mdl-37067316

ABSTRACT

It is desirable to relate entanglement of many-body systems to measurable observables. In systems with a conserved charge, it was recently shown that the number entanglement entropy (NEE)-i.e., the entropy change due to an unselective subsystem charge measurement-is an entanglement monotone. Here we derive finite-temperature equilibrium relations between Rényi moments of the NEE, and multipoint charge correlations. These relations are exemplified in quantum dot systems where the desired charge correlations can be measured via a nearby quantum point contact. In quantum dots recently realizing the multichannel Kondo effect we show that the NEE has a nontrivial universal temperature dependence which is now accessible using the proposed methods.

4.
Phys Rev Lett ; 129(22): 227702, 2022 Nov 23.
Article in English | MEDLINE | ID: mdl-36493429

ABSTRACT

The spin 1/2 entropy of electrons trapped in a quantum dot has previously been measured with great accuracy, but the protocol used for that measurement is valid only within a restrictive set of conditions. Here, we demonstrate a novel entropy measurement protocol that is universal for arbitrary mesoscopic circuits and apply this new approach to measure the entropy of a quantum dot hybridized with a reservoir. The experimental results match closely to numerical renormalization group (NRG) calculations for small and intermediate coupling. For the largest couplings investigated in this Letter, NRG calculations predict a suppression of spin entropy at the charge transition due to the formation of a Kondo singlet, but that suppression is not observed in the experiment.


Subject(s)
Quantum Dots , Cytoskeleton , Electrons , Entropy
5.
Phys Rev Lett ; 129(22): 227703, 2022 Nov 23.
Article in English | MEDLINE | ID: mdl-36493442

ABSTRACT

Non-Abelian anyons are fractional excitations of gapped topological models believed to describe certain topological superconductors or quantum Hall states. Here, we provide the first numerical evidence that they emerge as independent entities also in gapless electronic models. Starting from a multi-impurity multichannel chiral Kondo model, we introduce a novel mapping to a single-impurity model, amenable to Wilson's numerical renormalization group. We extract its spectral degeneracy structure and fractional entropy, and calculate the F matrices, which encode the topological information regarding braiding of anyons, directly from impurity spin-spin correlations. Impressive recent advances on realizing multichannel Kondo systems with chiral edges may thus bring anyons into reality sooner than expected.


Subject(s)
Models, Chemical , Entropy
6.
Phys Rev Lett ; 128(14): 146803, 2022 Apr 08.
Article in English | MEDLINE | ID: mdl-35476492

ABSTRACT

Fractional entropy is a signature of nonlocal degrees of freedom, such as Majorana zero modes or more exotic non-Abelian anyons. Although direct experimental measurements remain challenging, Maxwell relations provide an indirect route to the entropy through charge measurements. Here we consider multichannel charge-Kondo systems, which are predicted to host exotic quasiparticles due to a frustration of Kondo screening at low temperatures. In the absence of experimental data for the charge occupation, we derive relations connecting the latter to the conductance, for which experimental results have recently been obtained. Our analysis indicates that Majorana and Fibonacci anyon quasiparticles are well developed in existing two- and three-channel charge-Kondo devices, and that their characteristic k_{B}logsqrt[2] and k_{B}log[(1+sqrt[5])/2] entropies are experimentally measurable.

7.
Phys Rev Lett ; 126(14): 147702, 2021 Apr 09.
Article in English | MEDLINE | ID: mdl-33891454

ABSTRACT

Non-Fermi liquid (NFL) physics can be realized in quantum dot devices where competing interactions frustrate the exact screening of dot spin or charge degrees of freedom. We show that a standard nanodevice architecture, involving a dot coupled to both a quantum box and metallic leads, can host an exotic SO(5) symmetry Kondo effect, with entangled dot and box charge and spin. This NFL state is surprisingly robust to breaking channel and spin symmetry, but destabilized by particle-hole asymmetry. By tuning gate voltages, the SO(5) state evolves continuously to a spin and then "flavor" two-channel Kondo state. The expected experimental conductance signatures are highlighted.

8.
Proc Natl Acad Sci U S A ; 117(48): 30234-30240, 2020 12 01.
Article in English | MEDLINE | ID: mdl-33214150

ABSTRACT

Characterizing the entropy of a system is a crucial, and often computationally costly, step in understanding its thermodynamics. It plays a key role in the study of phase transitions, pattern formation, protein folding, and more. Current methods for entropy estimation suffer from a high computational cost, lack of generality, or inaccuracy and inability to treat complex, strongly interacting systems. In this paper, we present a method, termed machine-learning iterative calculation of entropy (MICE), for calculating the entropy by iteratively dividing the system into smaller subsystems and estimating the mutual information between each pair of halves. The estimation is performed with a recently proposed machine-learning algorithm which works with arbitrary network architectures that can be chosen to fit the structure and symmetries of the system at hand. We show that our method can calculate the entropy of various systems, both thermal and athermal, with state-of-the-art accuracy. Specifically, we study various classical spin systems and identify the jamming point of a bidisperse mixture of soft disks. Finally, we suggest that besides its role in estimating the entropy, the mutual information itself can provide an insightful diagnostic tool in the study of physical systems.

9.
Phys Rev Lett ; 125(12): 120502, 2020 Sep 18.
Article in English | MEDLINE | ID: mdl-33016759

ABSTRACT

Identifying topological properties is a major challenge because, by definition, topological states do not have a local order parameter. While a generic solution to this challenge is not available yet, a broad class of topological states, namely, symmetry-protected topological (SPT) states, can be identified by distinctive degeneracies in their entanglement spectrum. Here, we propose and realize two complementary protocols to probe these degeneracies based on, respectively, symmetry-resolved entanglement entropies and measurement-based computational algorithms. The two protocols link quantum information processing to the classification of SPT phases of matter. They invoke the creation of a cluster state and are implemented on an IBM quantum computer. The experimental findings are compared to noisy simulations, allowing us to study the stability of topological states to perturbations and noise.

10.
Phys Rev Lett ; 124(2): 026602, 2020 Jan 17.
Article in English | MEDLINE | ID: mdl-32004059

ABSTRACT

Mechanical deformations of graphene induce a term in the Dirac Hamiltonian that is reminiscent of an electromagnetic vector potential. Strain gradients along particular lattice directions induce local pseudomagnetic fields and substantial energy gaps as indeed observed experimentally. Expanding this analogy, we propose to complement the pseudomagnetic field by a pseudoelectric field, generated by a time-dependent oscillating stress applied to a graphene ribbon. The joint Hall-like response to these crossed fields results in a strain-induced charge current along the ribbon. We analyze in detail a particular experimental implementation in the (pseudo)quantum Hall regime with weak intervalley scattering. This allows us to predict an (approximately) quantized Hall current that is unaffected by screening due to diffusion currents.

11.
Phys Rev Lett ; 123(14): 147702, 2019 Oct 04.
Article in English | MEDLINE | ID: mdl-31702171

ABSTRACT

A pair of Majorana zero modes (MZMs) constitutes a nonlocal qubit whose entropy is log2. Upon strongly coupling one of the constituent MZMs to a reservoir with a continuous density of states, a universal entropy change of 1/2log2 is expected to be observed across an intermediate temperature plateau. We adapt the entropy-measurement scheme that was the basis of a recent experiment by Hartman et al. [Nat. Phys. 14, 1083 (2018)10.1038/s41567-018-0250-5] to the case of a proximitized topological system hosting MZMs and propose a method to measure this 1/2log2 entropy change-an unambiguous signature of the nonlocal nature of the topological state. This approach offers an experimental strategy to distinguish MZMs from non topological states.

12.
Phys Rev Lett ; 120(20): 200602, 2018 May 18.
Article in English | MEDLINE | ID: mdl-29864300

ABSTRACT

Similarly to the system Hamiltonian, a subsystem's reduced density matrix is composed of blocks characterized by symmetry quantum numbers (charge sectors). We present a geometric approach for extracting the contribution of individual charge sectors to the subsystem's entanglement measures within the replica trick method, via threading appropriate conjugate Aharonov-Bohm fluxes through a multisheet Riemann surface. Specializing to the case of 1+1D conformal field theory, we obtain general exact results for the entanglement entropies and spectrum, and apply them to a variety of systems, ranging from free and interacting fermions to spin and parafermion chains, and verify them numerically. We find that the total entanglement entropy, which scales as lnL, is composed of sqrt[lnL] contributions of individual subsystem charge sectors for interacting fermion chains, or even O(L^{0}) contributions when total spin conservation is also accounted for. We also explain how measurements of the contribution to the entanglement from separate charge sectors can be performed experimentally with existing techniques.

13.
Phys Rev Lett ; 120(18): 186801, 2018 May 04.
Article in English | MEDLINE | ID: mdl-29775350

ABSTRACT

The phenomenon of charge fractionalization describes the emergence of novel excitations with fractional quantum numbers, as predicted in strongly correlated systems such as spin liquids. We elucidate that precisely such an unusual effect may occur in the simplest possible non-Fermi liquid, the two-channel Kondo effect. To bring this concept down to experimental test, we study nonequilibrium transport through a device realizing the charge two-channel Kondo critical point in a recent experiment by Iftikhar et al. [Nature (London) 526, 233 (2015)NATUAS0028-083610.1038/nature15384]. The shot noise at low voltages is predicted to result in a universal Fano factor e^{*}/e=1/2. This allows us to experimentally identify elementary transport processes of emergent fermions carrying half-integer charge.

14.
Phys Rev Lett ; 118(23): 230402, 2017 Jun 09.
Article in English | MEDLINE | ID: mdl-28644672

ABSTRACT

Alkaline-earth(-like) atoms, trapped in optical lattices and in the presence of an external gauge field, can form insulating states at given fractional fillings. We will show that, by exploiting these properties, it is possible to realize a topological fractional pump. Our analysis is based on a many-body adiabatic expansion, on simulations with time-dependent matrix product states, and, for a specific form of atom-atom interaction, on an exactly solvable model of fractional pump. The numerical simulations allow us to consider a realistic setup amenable of an experimental realization. As a further consequence, the measure of the center-of-mass shift of the atomic cloud would constitute the first measurement of a many-body Chern number in a cold-atom experiment.

15.
Phys Rev Lett ; 118(11): 116401, 2017 Mar 17.
Article in English | MEDLINE | ID: mdl-28368636

ABSTRACT

We present direct experimental evidence of broken chirality in graphene by analyzing electron scattering processes at energies ranging from the linear (Dirac-like) to the strongly trigonally warped region. Furthermore, we are able to measure the energy of the van Hove singularity at the M point of the conduction band. Our data show a very good agreement with theoretical calculations for free-standing graphene. We identify a new intravalley scattering channel activated in case of a strongly trigonally warped constant energy contour, which is not suppressed by chirality. Finally, we compare our experimental findings with T-matrix simulations with and without the presence of a pseudomagnetic field and suggest that higher order electron hopping effects are a key factor in breaking the chirality near to the van Hove singularity.

16.
Phys Rev Lett ; 114(24): 247204, 2015 Jun 19.
Article in English | MEDLINE | ID: mdl-26197004

ABSTRACT

The two-dimensional Affleck-Kennedy-Lieb-Tasaki (AKLT) model on a honeycomb lattice has been shown to be a universal resource for quantum computation. In this valence bond solid, however, the spin interactions involve higher powers of the Heisenberg coupling (S[over →](I)·S[over →](j))(n), making these states seemingly unrealistic on bipartite lattices, where one expects a simple antiferromagnetic order. We show that those interactions can be generated by orbital physics in multiorbital Mott insulators. We focus on t(2g) electrons on the honeycomb lattice and propose a physical realization of the spin-3/2 AKLT state. We find a phase transition from the AKLT to the Néel state on increasing Hund's rule coupling, which is confirmed by density matrix renormalization group simulations. An experimental signature of the AKLT state consists of protected, free S=1/2 spins on lattice vacancies, which may be detected in the spin susceptibility.

17.
Phys Rev Lett ; 108(8): 086405, 2012 Feb 24.
Article in English | MEDLINE | ID: mdl-22463550

ABSTRACT

We consider the non-Fermi-liquid quantum critical state of the spin-S two-impurity Kondo model and its potential realization in a quantum dot device. Using conformal field theory and the numerical renormalization group, we show the critical point to be identical to that of the two-channel Kondo model with additional potential scattering, for any spin S. Distinct conductance signatures are shown to arise as a function of device asymmetry, with the square-root behavior commonly believed to arise at low-energies dominant only in certain regimes.

18.
Phys Rev Lett ; 106(14): 147202, 2011 Apr 08.
Article in English | MEDLINE | ID: mdl-21561217

ABSTRACT

Symmetry-breaking perturbations destabilize the critical points of the two-channel and two-impurity Kondo models, thereby leading to a crossover from non-Fermi liquid behavior to standard Fermi liquid physics. Here we use an analogy between this crossover and one occurring in the boundary Ising model to calculate the full crossover Green function analytically. In remarkable agreement with our numerical renormalization group calculations, the single exact function applies for an arbitrary mixture of the relevant perturbations in each model. This rich behavior resulting from finite channel asymmetry, interlead charge transfer, and/or magnetic field should be observable in quantum dot or tunneling experiments.

19.
Phys Rev Lett ; 103(8): 087204, 2009 Aug 21.
Article in English | MEDLINE | ID: mdl-19792756

ABSTRACT

We present exact results on the nonequilibrium current fluctuations for 2 quantum dots in series throughout a crossover from non-Fermi liquid to Fermi liquid behavior described by the 2 impurity Kondo model. The result corresponds to resonant tunneling of carriers of charge 2e for a critical interimpurity coupling. At low energy scales, the result can be understood from a Fermi liquid approach that we develop and use to also study nonequilibrium transport in an alternative double dot realization of the 2 impurity Kondo model under current experimental study.

20.
Phys Rev Lett ; 102(4): 047201, 2009 Jan 30.
Article in English | MEDLINE | ID: mdl-19257469

ABSTRACT

While violations of the Fermi liquid paradigm for metals are of great interest in various physical systems, quantum impurity models are among the few cases where exact theoretical results are available. Double quantum dots can provide an experimental realization of the 2 impurity Kondo model which exhibits a non-Fermi-liquid quantum critical point at a special value of its parameters. We present an exact universal result for the finite temperature nonlinear conductance along the crossover from this quantum critical point to the low energy Fermi liquid phase.

SELECTION OF CITATIONS
SEARCH DETAIL
...