Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Sex Dev ; 17(2-3): 156-168, 2023.
Article in English | MEDLINE | ID: mdl-37598664

ABSTRACT

BACKGROUND: While the term "aging" implies a process typically associated with later life, the consequences of ovarian aging are evident by the time a woman reaches her forties, and sometimes earlier. This is due to a gradual decline in the quantity and quality of oocytes which occurs over a woman's reproductive lifespan. Indeed, the reproductive potential of the ovary is established even before birth, as the proper formation and assembly of the ovarian germ cell population during fetal life determines the lifetime endowment of oocytes and follicles. In the ovary, sophisticated molecular processes have been identified that regulate the timing of ovarian aging and these are critical to ensuring follicular maintenance. SUMMARY: The mechanisms thought to contribute to overall aging have been summarized under the term the "hallmarks of aging" and include such processes as DNA damage, mitochondrial dysfunction, telomere attrition, genomic instability, and stem cell exhaustion, among others. Similarly, in the ovary, molecular processes have been identified that regulate the timing of ovarian aging and these are critical to ensuring follicular maintenance. In this review, we outline critical processes involved in ovarian aging, highlight major achievements for treatment of ovarian aging, and discuss ongoing questions and areas of debate. KEY MESSAGES: Ovarian aging is recognized as what may be a complex process in which age, genetics, environment, and many other factors contribute to the size and depletion of the follicle pool. The putative hallmarks of reproductive aging outlined herein include a diversity of plausible processes contributing to the depletion of the ovarian reserve. More research is needed to clarify if and to what extent these putative regulators do in fact govern follicle and oocyte behavior, and how these signals might be integrated in order to control the overall pattern of ovarian aging.


Subject(s)
Ovarian Follicle , Ovary , Humans , Female , Ovarian Follicle/physiology , Oocytes , Aging , Longevity
2.
J Immunol ; 206(10): 2322-2337, 2021 05 15.
Article in English | MEDLINE | ID: mdl-33931484

ABSTRACT

The costimulatory receptor CD28 synergizes with the TCR to promote IL-2 production, cell survival, and proliferation; yet the obligatory interdependence of TCR and CD28 signaling is not well understood. Upon TCR stimulation, Gads, a Grb2-family adaptor, bridges the interaction of two additional adaptors, LAT and SLP-76, to form a TCR-induced effector signaling complex. SLP-76 binds the Tec-family tyrosine kinase, Itk, which phosphorylates SLP-76 Y173 and PLC-γ1 Y783. In this study, we identified TCR-inducible, Itk-mediated phosphorylation of Gads Y45 in a human T cell line and in mouse primary T cells. Y45 is found within the N-terminal SH3 domain of Gads, an evolutionarily conserved domain with no known signaling function. Gads Y45 phosphorylation depended on the interaction of Gads with SLP-76 and on the dimerization-dependent binding of Gads to phospho-LAT. We provide evidence that Itk acts through SLP-76 and Gads to promote the TCR/CD28-induced activation of the RE/AP transcriptional element from the IL-2 promoter. Two Itk-related features of SLP-76, Y173 and a proline-rich Itk SH3 binding motif on SLP-76, were dispensable for activation of NFAT but selectively required for the TCR/CD28-induced increase in cytoplasmic and nuclear c-Rel and consequent RE/AP activation. We provide evidence that unphosphorylated, monomeric Gads mediates an RE/AP-directed inhibitory activity that is mitigated upon Gads dimerization and Y45 phosphorylation. This study illuminates a new, to our knowledge, regulatory module, in which TCR-induced, Itk-mediated phosphorylation sites on SLP-76 and Gads control the transcriptional response to TCR/CD28 costimulation, thus enforcing the obligatory interdependence of the TCR and CD28 signaling pathways.


Subject(s)
Adaptor Proteins, Signal Transducing/deficiency , Adaptor Proteins, Signal Transducing/metabolism , CD28 Antigens/metabolism , Phosphoproteins/metabolism , Protein-Tyrosine Kinases/metabolism , Receptors, Antigen, T-Cell/metabolism , Signal Transduction/genetics , Adaptor Proteins, Signal Transducing/genetics , Animals , Dimerization , Genetic Vectors , Humans , Interleukin-2/metabolism , Jurkat Cells , Mice , Mice, Inbred BALB C , Phosphoproteins/genetics , Phosphorylation/genetics , Protein Binding , Transfection
3.
Stem Cell Res Ther ; 11(1): 35, 2020 01 23.
Article in English | MEDLINE | ID: mdl-31973743

ABSTRACT

BACKGROUND: Adipose-derived stem cell (ASC) expansion under atmospheric oxygen levels (21%) was previously shown to cause increased reactive oxygen species (ROS) accumulation and genetic instability compared to cells cultured under physiological oxygen levels (2-8%). However, since culture under physiological oxygen levels is costly and complicated, a simpler method to reduce ROS accumulation is desirable. The current study aimed to determine whether lower culture temperature can reduce ROS production in ASCs without impairing their culture expansion. METHODS: Proliferation, differentiation, ROS accumulation, and gene expression were compared between ASC cultures at 35 °C and 37 °C. ASCs isolated either from rat fat depots or from human lipoaspirates were examined in the study. RESULTS: Rat visceral ASCs (vASCs) cultured at 35 °C demonstrated reduced ROS production and apoptosis and enhanced expansion and adipogenic differentiation compared to vASCs cultured at 37 °C. Similarly, the culture of human ASCs (hASCs) at 35 °C led to reduced ROS accumulation and apoptosis, with no effect on the proliferation rate, compared to hASCs cultured at 37 °C. Comparison of gene expression profiles of 35 °C versus 37 °C vASCs uncovered the development of a pro-inflammatory phenotype in 37 °C vASCs in correlation with culture temperature and ROS overproduction. This correlation was reaffirmed in both hASCs and subcutaneous rat ASCs. CONCLUSIONS: This is the first evidence of the effect of culture temperature on ASC growth and differentiation properties. Reduced temperatures may result in superior ASC cultures with enhanced expansion capacities in vitro and effectiveness in vivo.


Subject(s)
Adipose Tissue/metabolism , Stem Cells/metabolism , Animals , Cell Differentiation , Cells, Cultured , Humans , Inflammation , Oxidative Stress , Rats , Rats, Inbred Lew
4.
Plast Reconstr Surg Glob Open ; 7(7): e2321, 2019 Jul.
Article in English | MEDLINE | ID: mdl-31942351

ABSTRACT

Adipose-derived stem cells are derived from the nonfat component of adipose tissue termed the stromal vascular fraction (SVF). The use of freshly isolated autologous SVF cells as an alternative to adult stem cells is becoming more common. Repeated SVF administration for improved clinical outcomes is complicated by the need for repeated liposuction. This can be overcome by cryopreservation of SVF cells. The current study aimed to assess whether SVF cells retain their stem cell potency during cryopreservation. METHODS: SVF cells isolated from lipoaspirates (donor age: 46.1 ± 11.7 y; body mass index: 29.3 ± 4.8 kg/m2) were analyzed either immediately after isolation or following cryopreservation at -196°C. Analyses included assessment of nucleated cell counts by methylene blue staining, colony-forming unit fibroblast counts, surface marker expression using a flow cytometric panel (CD45, CD34, CD31, CD73, CD29, and CD105), expansion in culture, and differentiation to fat and bone. RESULTS: While cryopreservation reduced the number of viable SVF cells, stem cell potency was preserved, as demonstrated by no significant difference in the proliferation, surface marker expression in culture, bone and fat differentiation capacity, and the number of colony-forming unit fibroblasts in culture, in cryopreserved versus fresh SVF cells. Importantly, reduced cell counts of cryopreserved cells were due, mainly, to a reduction in hematopoietic CD45+ cells, which was accompanied by increased proportions of CD45-CD34+CD31- stem cell progenitor cells compared to fresh SVF cells. CONCLUSIONS: Cryopreservation of SVF cells did not affect their in vitro stem cell potency and may therefore enable repeated SVF cell administrations, without the need for repeated liposuction.

5.
Cell Death Dis ; 9(6): 695, 2018 06 11.
Article in English | MEDLINE | ID: mdl-29891848

ABSTRACT

Fas-L is a TNF family member known to trigger cell death. It has recently become evident that Fas-L can transduce also non-apoptotic signals. Mesenchymal stem cells (MSCs) are multipotent cells that are derived from various adult tissues. Although MSCs from different tissues display common properties they also display tissue-specific characteristics. Previous works have demonstrated massive apoptosis following Fas-L treatment of bone marrow-derived MSCs both in vitro and following their administration in vivo. We therefore set to examine Fas-L-induced responses in adipose-derived stem cells (ASCs). Human ASCs were isolated from lipoaspirates and their reactivity to Fas-L treatment was examined. ASCs responded to Fas-L by simultaneous apoptosis and proliferation, which yielded a net doubling of cell quantities and a phenotypic shift, including reduced expression of CD105 and increased expression of CD73, in association with increased bone differentiation potential. Treatment of freshly isolated ASCs led to an increase in large colony forming unit fibroblasts, likely produced by early stem cell progenitor cells. Fas-L-induced apoptosis and proliferation signaling were found to be independent as caspase inhibition attenuated Fas-L-induced apoptosis without impacting proliferation, whereas inhibition of PI3K and MEK, but not of JNK, attenuated Fas-L-dependent proliferation, but not apoptosis. Thus, Fas-L signaling in ASCs leads to their expansion and phenotypic shift toward a more potent stem cell state. We speculate that these reactions ensure the survival of ASC progenitor cells encountering Fas-L-enriched environments during tissue damage and inflammation and may also enhance ASC survival following their administration in vivo.


Subject(s)
Adipose Tissue/cytology , Fas Ligand Protein/pharmacology , Mesenchymal Stem Cells/cytology , Mesenchymal Stem Cells/metabolism , Antigens, CD/metabolism , Apoptosis/drug effects , Bone and Bones/cytology , Caspase Inhibitors/pharmacology , Cell Differentiation/drug effects , Cell Proliferation/drug effects , Colony-Forming Units Assay , Extracellular Signal-Regulated MAP Kinases/metabolism , Humans , JNK Mitogen-Activated Protein Kinases/metabolism , Phenotype , Phosphatidylinositol 3-Kinases/metabolism , Stromal Cells/drug effects , Stromal Cells/metabolism
6.
PLoS One ; 12(7): e0181507, 2017.
Article in English | MEDLINE | ID: mdl-28746417

ABSTRACT

BACKGROUND: Hand and face vascularized composite allotransplantation (VCA) is an evolving and challenging field with great opportunities. During VCA, massive surgical damage is inflicted on both donor and recipient tissues, which may contribute to the high VCA rejection rates. To segregate between the damage-induced and rejection phase of post-VCA responses, we compared responses occurring up to 5 days following syngeneic versus allogeneic vascularized groin flap transplantations, culminating in transplant acceptance or rejection, respectively. METHODS: The immune response elicited upon transplantation of a syngeneic versus allogeneic vascularized groin flap was compared at Post-operative days 2 or 5 by histology, immunohistochemistry and by broad-scope gene and protein analyses using quantitative real-time PCR and Multiplex respectively. RESULTS: Immune cell infiltration began at the donor-recipient interface and paralleled expression of a large group of wound healing-associated genes in both allografts and syngrafts. By day 5 post-transplantation, cell infiltration spread over the entire allograft but remained confined to the wound site in the syngraft. This shift correlated with upregulation of IL-18, INFg, CXCL9, 10 and 11, CCL2, CCL5, CX3CL1 and IL-10 in the allograft only, suggesting their role in the induction of the anti-alloantigen adaptive immune response. CONCLUSIONS: High resemblance between the cues governing VCA and solid organ rejection was observed. Despite this high resemblance we describe also, for the first time, a damage induced inflammatory component in VCA rejection as immune cell infiltration into the graft initiated at the surgical damage site spreading to the entire allograft only at late stage rejection. We speculate that the highly inflammatory setting created by the unique surgical damage during VCA may enhance acute allograft rejection.


Subject(s)
Composite Tissue Allografts/immunology , Graft Rejection/immunology , Inflammation/immunology , Vascularized Composite Allotransplantation/methods , Animals , Cytokines/genetics , Cytokines/immunology , Cytokines/metabolism , Gene Expression/immunology , Groin/surgery , Immunohistochemistry , Models, Animal , Postoperative Period , Rats, Inbred BN , Rats, Inbred Lew , Reverse Transcriptase Polymerase Chain Reaction , Surgical Flaps/immunology , Time Factors , Transplantation, Homologous
7.
Stem Cell Res Ther ; 5(6): 139, 2014 Dec 17.
Article in English | MEDLINE | ID: mdl-25519840

ABSTRACT

INTRODUCTION: Mesenchymal stem cells (MSCs) are multipotent and have been derived from various tissues. Although MSCs share many basic features, they often display subtle tissue specific differences. We previously demonstrated that bone marrow (BM) MSCs frequently become polyploid in culture. This tendency was mediated by a reduction in the expression of H19 long non-coding RNA during the transition from a diploid to a polyploid state. METHODS: MSCs were derived from both BM and adipose tissue of mice and expanded under normoxic and hypoxic culture conditions. Cells were stained by propidium iodide and their ploidy was evaluated by FACS. Gene expression of independent MSC preparations was compared by quantitative real time PCR and protein expression levels by Western blot analysis. p53 silencing in MSCs was performed by a specific small hairpin RNA (shRNA). RESULTS: We set to examine whether genomic instability is common to MSCs originating from different tissues. It is demonstrated that adipose derived MSCs (ASCs) tend to remain diploid during culture while a vast majority of BM MSCs become polyploid. The diploid phenotype of ASCs is correlated with reduced H19 expression compared to BM MSCs. Under hypoxic conditions (3% oxygen) both ASCs and BM MSCs demonstrate increased RNA expression of H19 and Vascular endothelial growth factor A. Importantly, ASC gene expression is significantly less variable than BM MSCs under both oxygen conditions, indicating to their superior homogeneity. Gene expression analysis revealed that p53 target genes, often induced by DNA damage, are up-regulated in ASCs under basal conditions. However, p53 activation following treatment with DNA damaging agents was strongly elevated in BM MSCs compared to ASCs. We found that p53 is involved in maintaining the stable diploid state of ASCs as p53 shRNA induced ploidy changes in ASCs but not in BM MSCs. CONCLUSIONS: The increased genomic stability of murine ASCs together with their lower H19 expression and relative homogeneity suggest a tissue specific higher stability of ASCs compared to BM MSCs, possibly due to higher activity of p53. The tissue specific differences between MSCs from a different tissue source may have important consequences on the use of various MSCs both in vitro and in vivo.


Subject(s)
Adipose Tissue/cytology , Genomic Instability , Mesenchymal Stem Cells/metabolism , RNA, Long Noncoding/genetics , Tumor Suppressor Protein p53/metabolism , Animals , Cells, Cultured , Mesenchymal Stem Cells/cytology , Mice , Mice, Inbred C57BL , Organ Specificity , Ploidies , Tumor Suppressor Protein p53/genetics , Vascular Endothelial Growth Factor A/genetics , Vascular Endothelial Growth Factor A/metabolism
8.
EMBO J ; 30(15): 3160-72, 2011 Jul 01.
Article in English | MEDLINE | ID: mdl-21725281

ABSTRACT

Cooperatively assembled signalling complexes, nucleated by adaptor proteins, integrate information from surface receptors to determine cellular outcomes. In T and mast cells, antigen receptor signalling is nucleated by three adaptors: SLP-76, Gads and LAT. Three well-characterized SLP-76 tyrosine phosphorylation sites recruit key components, including a Tec-family tyrosine kinase, Itk. We identified a fourth, evolutionarily conserved SLP-76 phosphorylation site, Y173, which was phosphorylated upon T-cell receptor stimulation in primary murine and Jurkat T cells. Y173 was required for antigen receptor-induced phosphorylation of phospholipase C-γ1 (PLC-γ1) in both T and mast cells, and for consequent downstream events, including activation of the IL-2 promoter in T cells, and degranulation and IL-6 production in mast cells. In intact cells, Y173 phosphorylation depended on three, ZAP-70-targeted tyrosines at the N-terminus of SLP-76 that recruit and activate Itk, a kinase that selectively phosphorylated Y173 in vitro. These data suggest a sequential mechanism whereby ZAP-70-dependent priming of SLP-76 at three N-terminal sites triggers reciprocal regulatory interactions between Itk and SLP-76, which are ultimately required to couple active Itk to its substrate, PLC-γ1.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , Lymphocyte Activation , Mast Cells/immunology , Phosphoproteins/metabolism , Protein-Tyrosine Kinases/metabolism , Signal Transduction , T-Lymphocytes/immunology , ZAP-70 Protein-Tyrosine Kinase/metabolism , Animals , Cells, Cultured , Humans , Interleukin-2/metabolism , Interleukin-6/metabolism , Mice , Phospholipase C gamma/metabolism , Phosphorylation , Tyrosine/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...