Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Algorithms Mol Biol ; 16(1): 15, 2021 Jul 08.
Article in English | MEDLINE | ID: mdl-34238311

ABSTRACT

BACKGROUND: In the context of biomarker discovery and molecular characterization of diseases, laser capture microdissection is a highly effective approach to extract disease-specific regions from complex, heterogeneous tissue samples. For the extraction to be successful, these regions have to satisfy certain constraints in size and shape and thus have to be decomposed into feasible fragments. RESULTS: We model this problem of constrained shape decomposition as the computation of optimal feasible decompositions of simple polygons. We use a skeleton-based approach and present an algorithmic framework that allows the implementation of various feasibility criteria as well as optimization goals. Motivated by our application, we consider different constraints and examine the resulting fragmentations. We evaluate our algorithm on lung tissue samples in comparison to a heuristic decomposition approach. Our method achieved a success rate of over 95% in the microdissection and tissue yield was increased by 10-30%. CONCLUSION: We present a novel approach for constrained shape decomposition by demonstrating its advantages for the application in the microdissection of tissue samples. In comparison to the previous decomposition approach, the proposed method considerably increases the amount of successfully dissected tissue.

2.
Cells ; 10(4)2021 04 17.
Article in English | MEDLINE | ID: mdl-33920556

ABSTRACT

Neuronal models of neurodegenerative diseases such as Parkinson's Disease (PD) are extensively studied in pathological and therapeutical research with neurite outgrowth being a core feature. Screening of neurite outgrowth enables characterization of various stimuli and therapeutic effects after lesion. In this study, we describe an autonomous computational assay for a high throughput skeletonization approach allowing for quantification of neurite outgrowth in large data sets from fluorescence microscopic imaging. Development and validation of the assay was conducted with differentiated SH-SY5Y cells and primary mesencephalic dopaminergic neurons (MDN) treated with the neurotoxic lesioning compound Rotenone. Results of manual annotation using NeuronJ and automated data were shown to correlate strongly (R2-value 0.9077 for SH-SY5Y cells and R2-value 0.9297 for MDN). Pooled linear regressions of results from SH-SY5Y cell image data could be integrated into an equation formula (y=0.5410·x+1792; y=0.8789·x+0.09191 for normalized results) with y depicting automated and x depicting manual data. This automated neurite length algorithm constitutes a valuable tool for modelling of neurite outgrowth that can be easily applied to evaluate therapeutic compounds with high throughput approaches.


Subject(s)
High-Throughput Screening Assays , Models, Biological , Neuronal Outgrowth , Parkinson Disease/pathology , Automation , Cell Line, Tumor , Dopaminergic Neurons/drug effects , Dopaminergic Neurons/pathology , Humans , Mesencephalon/pathology , Neuronal Outgrowth/drug effects , Rotenone/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...