Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Photochem Photobiol B ; 210: 111958, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32707424

ABSTRACT

Cellular membrane is one of the main targets of photodynamic therapy. Its high complexity has led to the study of the efficiency of photosensitizers on artificial lipid systems mimicking membranes. However, the preliminary analysis of this efficiency remains limited due to difficulty of the model construction and/or implementation of the required measurement techniques. Hereby, we propose a quite simple way for the rapid comparative assessment of novel photosensitizers in terms of membrane photodegradation, based on simple and fast measurements, such as wetting angle and surface plasmon resonance spectroscopy. As a proof of concept, we applied this methodology to two bacteriopurpurinimide derivatives. We have shown in particular that such complementary techniques can be employed not only for the multiparametric monitoring of the kinetics of the photodegradation, but also for the comparison of the damaging efficiency of the photosensitizers in the lipid structures as well.


Subject(s)
Photosensitizing Agents/chemistry , Unilamellar Liposomes/chemistry , Infrared Rays , Microscopy, Atomic Force , Models, Molecular , Photolysis , Photosensitizing Agents/metabolism , Surface Plasmon Resonance , Unilamellar Liposomes/chemical synthesis , Water/chemistry
2.
Sci Rep ; 10(1): 1108, 2020 01 24.
Article in English | MEDLINE | ID: mdl-31980669

ABSTRACT

In the drill core of the Kola super-deep borehole (SG-3, 12,262 m depth) gold-bearing rocks of Archaean age have been located at depths of 9,500 to 11,000 m. In veins, between 9,052 and 10,744 m, within this gold zone, quartz contains fluid inclusions with gold nanoparticles. There are 4 types of fluid inclusions (1) gas inclusions of dense CO2, (2) liquid-vapor two-phase aqueous inclusions, (3) three-phase inclusions with NaCl daughter crystals, and (4) CO2-aqueous inclusions. In all inclusion types, there are extremely high concentrations of gold. The highest gold concentrations were found in the type 3 and 4 fluid inclusions with an average concentration of c. 750 ppm and may be as high as 6,000 ppm. The presence of gold as nanoparticles in the solutions of these fluid inclusions was determined by optical and spectroscopic methods. We suggest that these fluids could be a precursor of "orogenic gold fluids" which, at the gold concentrations determined, would reduce the requirements for large volumes of metamorphic fluids to form orogenic ore deposits. Further, as nanoparticles, gold could be transported in larger amounts than in true solution.

3.
Langmuir ; 34(26): 7690-7697, 2018 07 03.
Article in English | MEDLINE | ID: mdl-29874084

ABSTRACT

This study takes a novel approach to the enhancement of receptor properties of thin-film sensors based on hemicyanine dyes with dithia-aza-crown-ionophoric moiety. By means of in situ UV-vis and X-ray reflectivity (XRR) measurements, it was revealed that the introduction of up to 0.25 mmol of Hg2+ under a preliminarily compressed monolayer, formed on pure water, does not lead to cation binding. This is due to the formation of "head-to-tail" aggregates (H-type), in which ionophoric group is blocked by the neighboring molecule. However, the presence of barium cations in the subphase under the forming Langmuir monolayer of the mentioned compound causes codirectional (head-to-head) orientation of chromoionophore fragments. This provides preorganization of a monolayer structure that facilitates the binding of complementary mercury cations, even in a compressed state: asymmetric sandwich complexes containing two dye molecules coordinate a Hg2+ cation between them. This complex structure was confirmed by molecular modeling based on the electron density distribution calculated from XRR measurement data. Such preorganization of supramolecular ensembles induced by cations, which do not participate in the complex formation with macroheterocyclic receptors, may have applications in fields where strict control of molecular orientation at the interface is required, such as nanoelectronics, sensorics, catalysis, etc.

4.
Langmuir ; 32(2): 637-43, 2016 Jan 19.
Article in English | MEDLINE | ID: mdl-26654539

ABSTRACT

Supramolecular structure of ultrathin films of hemicyanine dye bearing a crown ether group (CrHCR) was tuned by lateral pressure and investigated by means of compression isotherms, UV-vis and fluorescence spectroscopies, and X-ray reflectivity. Two different types of aggregation were revealed, depending on the absence or the presence of metal cations in the water subphase. While CrHCR forms at high surface pressures head-to-tail stacking aggregates on pure water, changing the subphase to a metal-cation-containing one leads to the appearance of well-defined excimers with head-to-head orientation. The structure of monolayers transferred onto solid supports by the Langmuir-Blodgett (LB) technique was examined by use of X-ray reflectivity measurements and molecular modeling. A model of cation-induced excimer formation in hemicyanine Langmuir monolayers is proposed. Finally, fluorescence emission properties of LB films of CrHCR can be managed by appropriate changes in the subphase composition, this last one determining the type of chromophore aggregation.


Subject(s)
Carbocyanines/chemistry , Crown Ethers/chemistry , Fluorescent Dyes/chemistry , Ionophores/chemistry , Surface-Active Agents/chemistry , Cations , Light , Models, Molecular , Photochemical Processes , Thermodynamics
SELECTION OF CITATIONS
SEARCH DETAIL
...