Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Dev Dyn ; 2023 Oct 19.
Article in English | MEDLINE | ID: mdl-37855428

ABSTRACT

BACKGROUND: Annual or seasonal killifishes (Cyprinodontiformes: Nothobranchiidae) are unique among fish in their ability to enter into developmental arrests (diapauses: DI, DII, and DIII). They have a short lifespan and their embryos are exceptionally tolerant to a variety of environmental stresses. These traits make them a popular model for studying vertebrate diapause, aging, stress tolerance, genome adaptation, and evolution. In such issues, in a comparative evolutionary framework, Fundulopanchax gardneri, a popular aquarium fish from Africa, is commonly used as a representative non-annual model though its development is not studied in detail and whether it includes diapauses remains uncertain. RESULTS: We described in detail for the first time embryonic development of F. gardneri and revealed it to resemble that in the undoubtedly annual Austrofundulus limnaeus killifish in displaying two developmental depressions. However, if compared with A. limnaeus, these developmental states look like "less intense" versions of DII and DIII rather than true diapauses. CONCLUSIONS: To determine whether developmental depressions in F. gardneri represent "true" diapauses or only their functional equivalents, detailed studies of embryonic development of different killifish both annual and non-annual are needed. Before that, acceptance of F. gardneri as a representative non-annual fish seems premature.

2.
Insects ; 14(7)2023 Jul 05.
Article in English | MEDLINE | ID: mdl-37504615

ABSTRACT

Prezygotic isolation mechanisms, particularly courtship behavior, play a significant role in the formation of reproductive barriers. The action of these mechanisms leads to the coexistence of numerous closely related insect species with specific adaptations in a shared or adjacent territory. The genetic basis of these mechanisms has been studied using closely related Drosophila species, such as the D. virilis group. However, the investigation of individual courtship behavior elements has been limited until recently, and the effect of genotype on the species-specific features of courtship as a whole has not been thoroughly examined. It should be noted that courtship behavior is not a typical quantitative trait that can be easily measured or quantified in both females and males, similar to traits like wing length or bristle number. Each courtship element involves the participation of both female and male partners, making the genetic analysis of this behavior complex. As a result, the traditional approach of genetic analysis for quantitative traits, which involves variance decomposition in a set of crosses, including parental species, F1 and F2 hybrids, and backcrosses of F1 to parental species, is not suitable for analyzing courtship behavior. To address this, we employed a modified design by introducing what we refer to as 'reference partners' during the testing of hybrid individuals from F1, F2, and backcrosses. These reference partners represented one of the parental species. This approach allowed us to categorize all possible test combinations into four groups based on the reference partner's sex (female or male) and their constant genotype towards one of the parental species (D. virilis or D. americana). The genotype of the second partner in the within-group test combinations varied from completely conspecific to completely heterospecific, based on the parental chromosomal sets. To assess the contribution of partner genotypes to the variability of courtship-element parameters, we employed structural equation modeling (SEM) instead of the traditional analysis of variance (ANOVA). SEM enabled us to estimate the regression of the proportion of chromosomes of a specific species type on the value of each courtship-element parameter in partners with varying genotypes across different test combinations. The aim of the current study was to analyze the involvement of sex chromosomes and autosomes in the formation of courtship structure in D. virilis and D. americana. The genetic analysis was complemented by video recording and formalization of courtship-ritual elements. D. virilis was found to be more sensitive to mate stimuli compared to D. americana. The majority of species-specific parameters, such as latency and duration of courtship elements (e.g., male and female song, following, licking, and circling), were shown to be influenced by the D. virilis genotype. However, not all of these parameters significantly impact copulation success, with the male song, licking, and following being the most significant. In females, the female song was found to have a significant relationship only with copulation duration. The influence of the female genotype on the species-specific parameters of courtship elements is primarily related to autosomes, while the male genotype is associated with the X chromosomes. The study suggests that sexual selection primarily occurs through acoustic and chemoreceptor channels.

3.
Rev Sci Instrum ; 90(12): 123313, 2019 Dec 01.
Article in English | MEDLINE | ID: mdl-31893855

ABSTRACT

One of the most prospective electrical and optical nonvolatile memory types is the phase change memory based on chalcogenide materials, particularly Ge2Sb2Te5. Introduction of dopants is an effective method for the purposeful change of Ge2Sb2Te5 thin film properties. In this work, we used the ion implantation method for the introduction of In and Sn into Ge2Sb2Te5 thin films by a Multipurpose Test Bench (MTB) at the National Research Center "Kurchatov Institute"-Institute for Theoretical and Experimental Physics. For Sn and In ion implantation into Ge2Sb2Te5, the following MTB elements were used: a vacuum arc ion source, an electrostatic focusing system, and a system for current and beam profile measurements. The MTB parameters for Sn and In ion implantation and its effect on the material properties are presented. Implanted Ge2Sb2Te5 thin films were irradiated by femtosecond laser pulses. It was shown that the ion implantation resulted in a decrease in the threshold laser fluence necessary for crystallization compared to the undoped Ge2Sb2Te5.

SELECTION OF CITATIONS
SEARCH DETAIL
...