Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Neurotherapeutics ; : e00423, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38964948

ABSTRACT

Tauopathies constitute a group of neurodegenerative diseases characterized by abnormal aggregation of the protein tau, progressive neuronal and synaptic loss, and eventual cognitive and motor impairment. In this review, we will highlight the latest efforts investigating the intricate interplay between the gut microbiome and tauopathies. We discuss the physiological interactions between the microbiome and the brain as well as clinical and experimental evidence that suggests that the presence of tauopathy alters the composition of gut microbiota. We explore both animal and human studies that define causative relationships between the gut microbiome and tauopathy by directly manipulating or transferring gut microbiota. This review highlights future directions into identifying and mechanistically elucidating microbial species causally linked to tauopathies, with an ultimate goal of devising therapeutic targets towards the gut microbiome to treat tauopathies.

2.
Nat Med ; 29(9): 2187-2199, 2023 09.
Article in English | MEDLINE | ID: mdl-37667136

ABSTRACT

Alzheimer disease (AD) is the most common contributor to dementia in the world, but strategies that slow or prevent its clinical progression have largely remained elusive, until recently. This Review highlights the latest advances in biomarker technologies and therapeutic development to improve AD diagnosis and treatment. We review recent results that enable pathological staging of AD with neuroimaging and fluid-based biomarkers, with a particular emphasis on the role of amyloid, tau and neuroinflammation in disease pathogenesis. We discuss the lessons learned from randomized controlled trials, including some supporting the proposal that certain anti-amyloid antibodies slow cognitive decline during the mildly symptomatic phase of AD. In addition, we highlight evidence for newly identified therapeutic targets that may be able to modify AD pathogenesis and progression. Collectively, these recent discoveries-and the research directions that they open-have the potential to move AD clinical care toward disease-modifying treatment strategies with maximal benefits for patients.


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , Humans , Alzheimer Disease/diagnosis , Alzheimer Disease/therapy , Neuroimaging , Technology
3.
Ann Clin Transl Neurol ; 10(6): 1012-1024, 2023 06.
Article in English | MEDLINE | ID: mdl-37119480

ABSTRACT

OBJECTIVE: Accumulation of misfolded superoxide dismutase-1 (SOD1) is a pathological hallmark of SOD1-related amyotrophic lateral sclerosis (ALS) and is observed in sporadic ALS where its role in pathogenesis is controversial. Understanding in vivo protein kinetics may clarify how SOD1 influences neurodegeneration and inform optimal dosing for therapies that lower SOD1 transcripts. METHODS: We employed stable isotope labeling paired with mass spectrometry to evaluate in vivo protein kinetics and concentration of soluble SOD1 in cerebrospinal fluid (CSF) of SOD1 mutation carriers, sporadic ALS participants and controls. A deaminated SOD1 peptide, SDGPVKV, that correlates with protein stability was also measured. RESULTS: In participants with heterozygous SOD1A5V mutations, known to cause rapidly progressive ALS, mutant SOD1 protein exhibited ~twofold faster turnover and ~ 16-fold lower concentration compared to wild-type SOD1 protein. SDGPVKV levels were increased in SOD1A5V carriers relative to controls. Thus, SOD1 mutations impact protein kinetics and stability. We applied this approach to sporadic ALS participants and found that SOD1 turnover, concentration, and SDGPVKV levels are not significantly different compared to controls. INTERPRETATION: These results highlight the ability of stable isotope labeling approaches and peptide deamidation to discern the influence of disease mutations on protein kinetics and stability and support implementation of this method to optimize clinical trial design of gene and molecular therapies for neurological disorders. TRIAL REGISTRATION: Clinicaltrials.gov: NCT03449212.


Subject(s)
Amyotrophic Lateral Sclerosis , Humans , Superoxide Dismutase-1/genetics , Amyotrophic Lateral Sclerosis/genetics , Amyotrophic Lateral Sclerosis/cerebrospinal fluid , Superoxide Dismutase/genetics , Kinetics
4.
Ann Clin Transl Neurol ; 5(12): 1492-1504, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30564616

ABSTRACT

OBJECTIVES: Clinical trials for progressive neurodegenerative disorders such as Alzheimer's Disease and Amyotrophic Lateral Sclerosis have been hindered due to the absence of effective pharmacodynamics markers to assay target engagement. We tested whether measurements of new protein production would be a viable pharmacodynamics tool for RNA-targeted therapies. METHODS: Transgenic animal models expressing human proteins implicated in neurodegenerative disorders - microtubule-associated protein tau (hTau) or superoxide dismutase-1 (hSOD1) - were treated with antisense oligonucleotides (ASOs) delivered to the central nervous system to target these human mRNA transcripts. Simultaneously, animals were administered 13C6-leucine via drinking water to measure new protein synthesis after ASO treatment. Measures of new protein synthesis and protein concentration were assayed at designated time points after ASO treatment using targeted proteomics. RESULTS: ASO treatment lowered hTau mRNA and protein production (measured by 13C6-leucine-labeled hTau protein) earlier than total hTau protein concentration in transgenic mouse cortex. In the CSF of hSOD1 transgenic rats, ASO treatment lowered newly generated hSOD1 protein driven by decreases in newly synthesized hSOD1 protein, not overall protein concentration, 30 days after treatment. At later time points, decreases in newly generated protein were still observed after mRNA lowering reached a steady state after ASO treatment. INTERPRETATION: Measures of newly generated protein show earlier pharmacodynamics changes for RNA-lowering therapeutics compared with total protein concentration. Early in ASO treatment, decreases in newly generated protein are driven by changes in newly synthesized protein. Measuring new protein production in CSF may be a promising early pharmacodynamics marker for RNA-targeted therapeutics.

5.
J Clin Invest ; 125(7): 2772-80, 2015 Jul 01.
Article in English | MEDLINE | ID: mdl-26075819

ABSTRACT

Therapeutic strategies that target disease-associated transcripts are being developed for a variety of neurodegenerative syndromes. Protein levels change as a function of their half-life, a property that critically influences the timing and application of therapeutics. In addition, both protein kinetics and concentration may play important roles in neurodegeneration; therefore, it is essential to understand in vivo protein kinetics, including half-life. Here, we applied a stable isotope-labeling technique in combination with mass spectrometric detection and determined the in vivo kinetics of superoxide dismutase 1 (SOD1), mutation of which causes amyotrophic lateral sclerosis. Application of this method to human SOD1-expressing rats demonstrated that SOD1 is a long-lived protein, with a similar half-life in both the cerebral spinal fluid (CSF) and the CNS. Additionally, in these animals, the half-life of SOD1 was longest in the CNS when compared with other tissues. Evaluation of this method in human subjects demonstrated successful incorporation of the isotope label in the CSF and confirmed that SOD1 is a long-lived protein in the CSF of healthy individuals. Together, the results of this study provide important insight into SOD1 kinetics and support application of this technique to the design and implementation of clinical trials that target long-lived CNS proteins.


Subject(s)
Central Nervous System/enzymology , Superoxide Dismutase/metabolism , Amino Acid Sequence , Amino Acid Substitution , Amyotrophic Lateral Sclerosis/cerebrospinal fluid , Amyotrophic Lateral Sclerosis/enzymology , Amyotrophic Lateral Sclerosis/genetics , Animals , Carbon Isotopes , Disease Models, Animal , Female , HEK293 Cells , Humans , Isotope Labeling , Kinetics , Male , Molecular Sequence Data , Mutagenesis, Site-Directed , Mutant Proteins/cerebrospinal fluid , Mutant Proteins/genetics , Mutant Proteins/metabolism , Rats , Rats, Transgenic , Recombinant Proteins/cerebrospinal fluid , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Superoxide Dismutase/cerebrospinal fluid , Superoxide Dismutase/genetics , Superoxide Dismutase-1 , Tandem Mass Spectrometry
6.
Biomaterials ; 34(29): 7001-15, 2013 Sep.
Article in English | MEDLINE | ID: mdl-23791503

ABSTRACT

The current study seeks to elucidate a biological mechanism which may mediate neuroinflammation, and decreases in both blood-brain barrier stability and neuron viability at the intracortical microelectrode-tissue interface. Here, we have focused on the role of pro-inflammatory reactive oxygen species. Specifically, adult rats implanted within intracortical microelectrodes were systemically administered the anti-oxidant, resveratrol, both the day before and the day of surgery. Animals were sacrificed at two or four weeks post-implantation for histological analysis of the neuroinflammatory and neurodegenerative responses to the microelectrode. At two weeks post-implantation, we found animals treated with resveratrol demonstrated suppression of reactive oxygen species accumulation and blood-brain barrier instability, accompanied with increased density of neurons at the intracortical microelectrode-tissue interface. Four weeks post-implantation, animals treated with resveratrol exhibited indistinguishable levels of markers for reactive oxygen species and neuronal nuclei density in comparison to untreated control animals. However, of the neurons that remained, resveratrol treated animals were seen to display reductions in the density of degenerative neurons compared to control animals at both two and four weeks post-implantation. Initial mechanistic evaluation suggested the roles of both anti-oxidative enzymes and toll-like receptor 4 expression in facilitating microglia activation and the propagation of neurodegenerative inflammatory pathways. Collectively, our data suggests that short-term attenuation of reactive oxygen species accumulation and blood-brain barrier instability can result in prolonged improvements in neuronal viability around implanted intracortical microelectrodes, while also identifying potential therapeutic targets to reduce chronic intracortical microelectrode-mediated neurodegeneration.


Subject(s)
Antioxidants/therapeutic use , Blood-Brain Barrier/drug effects , Electrodes, Implanted/adverse effects , Neurons/drug effects , Stilbenes/therapeutic use , Animals , Blood-Brain Barrier/immunology , Blood-Brain Barrier/pathology , Male , Microelectrodes/adverse effects , Neurons/immunology , Neurons/pathology , Rats , Reactive Oxygen Species/immunology , Resveratrol
7.
J Neural Eng ; 9(4): 046020, 2012 Aug.
Article in English | MEDLINE | ID: mdl-22832283

ABSTRACT

An estimated 25 million people in the US alone rely on implanted medical devices, ∼2.5 million implanted within the nervous system. Even though many devices perform adequately for years, the host response to medical devices often severely limits tissue integration and long-term performance. This host response is believed to be particularly limiting in the case of intracortical microelectrodes, where it has been shown that glial cell encapsulation and localized neuronal cell loss accompany intracortical microelectrode implantation. Since neuronal ensembles must be within ∼50 µm of the electrode to obtain neuronal spikes and local field potentials, developing a better understanding of the molecular and cellular environment at the device-tissue interface has been the subject of significant research. Unfortunately, immunohistochemical studies of scar maturation in correlation to device function have been inconclusive. Therefore, here we present a detailed quantitative study of the cellular events and the stability of the blood-brain barrier (BBB) following intracortical microelectrode implantation and cortical stab injury in a chronic survival model. We found two distinctly inverse multiphasic profiles for neuronal survival in device-implanted tissue compared to stab-injured animals. For chronically implanted animals, we observed a biphasic paradigm between blood-derived/trauma-induced and CNS-derived inflammatory markers driving neurodegeneration at the interface. In contrast, stab injured animals demonstrated a CNS-mediated neurodegenerative environment. Collectively these data provide valuable insight to the possibility of multiple roles of chronic neuroinflammatory events on BBB disruption and localized neurodegeneration, while also suggesting the importance to consider multiphasic neuroinflammatory kinetics in the design of therapeutic strategies for stabilizing neural interfaces.


Subject(s)
Brain Injuries/pathology , Electrodes, Implanted , Nerve Degeneration/pathology , Neurons/pathology , Wounds, Stab/pathology , Animals , Brain/pathology , Brain Injuries/physiopathology , Cell Survival/physiology , Electrodes, Implanted/adverse effects , Inflammation/pathology , Inflammation/physiopathology , Male , Microglia/pathology , Nerve Degeneration/physiopathology , Rats , Rats, Sprague-Dawley , Wounds, Stab/physiopathology
SELECTION OF CITATIONS
SEARCH DETAIL
...