Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Omega ; 9(15): 17563-17576, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38645369

ABSTRACT

Transition-metal oxide has been identified as an auspicious material for supercapacitors due to its exceptional capacity. The inadequate electrochemical characteristics, such as prolonged cycle stability, can be ascribed to factors, such as low electrical conductivity, sluggish reaction kinetics, and a deficiency of active sites. The transition-metal oxides derived from the MOF materials offer a larger surface area with enriched active sites and a faster reaction rate along with good electrical conductivity. The manganese (Mn)-based metal-organic framework (MOF)-derived materials were produced using the pyrolysis method. Zeolitic imidazolate frameworks (ZIF-67) were fabricated in water at ambient temperature with the aid of triethylamine. Multiple techniques were used to examine the characteristics of the fabricated electrode materials. The influence of the electrolyte on the electrochemical activity of the Mn3O4@N-doped C electrode materials was determined in KOH, NaOH, and LiOH. For manufacturing of "Mn3O4@N-doped C", ZIF-67 was used as a precursor. The capacitive performance of the Mn3O4@N-doped C electrode increased as a result of nitrogen-doped carbon; after 5000th cycles, the electrode retained an excellent rate capability and a high specific capacitance (Cs) of 980 F g-1 at 1 A g-1 under 2.0 KOH electrolyte in a three electrode system. The carbonized manganese oxide displays also had a high Cs of 686 F g-1 in two electrode systems in 2.0 M KOH. Materials made from MOFs show promise as capacitive materials for applications in energy conversion storage owing to their straightforward synthesis and strong electrochemical performance.

2.
Int J Biol Macromol ; 254(Pt 1): 127767, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38287576

ABSTRACT

Water pollution by organic dyes is one of the most serious environmental problems worldwide. Malachite green (MG) is considered as one the serious organic dyes which is discharged in wastewater by leather and textile manufacturing plants. MG dye can cause severe hazards to the environment and human health. Therefore, the removal of MG dye from wastewater is very important and essential. This study aims to synthesize a new magnetic hydrochar grafted to chitosan (MWSHC@CS) for the removal of MG dye from the aqueous solutions. Transmission electron microscopy (TEM), Fourier-transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), Brunauer-Emmett-Teller (BET) surface area, and Zeta potential analysis were used to characterize the synthesized MWSHC@CS. Batch experiments were conducted to optimize MG dye adsorption conditions, including adsorbent mass, pH, temperature, initial concentration, and contact time. The results revealed that MWSHC@CS had an excellent removal efficiency (96.47 %) for MG dye at the optimum condition (at m: 20 mg, pH: 7.5, t: 420 min, and T: 298 K). Adsorption isotherms outcomes revealed the MG adsorption data were best fit by the Langmuir model with a maximum adsorption capacity (420.02 mg/g). Adsorption kinetics outcomes exhibited that the adsorption process of MG dye fitted well to the Elovich model. The thermodynamic results revealed that the adsorption process was physical, exothermic, and spontaneous. The adsorption mechanisms of MG onto MWSHC@CS were hydrogen bonding, electrostatic interaction, and π-π interactions. Furthermore, MWSHC@CS showed excellent reusability for the removal of MG over five cycles of adsorption-desorption (83.76 %). In conclusion, the study provides a new, low-cost, and effective magnetic nanocomposite based on chitosan as a promising adsorbent for the high-performance removal of MG dye from aqueous solutions.


Subject(s)
Chitosan , Rosaniline Dyes , Water Pollutants, Chemical , Humans , Adsorption , Wastewater , Chitosan/chemistry , Thermodynamics , Coloring Agents/chemistry , Water/chemistry , Kinetics , Magnetic Phenomena , Water Pollutants, Chemical/chemistry , Hydrogen-Ion Concentration , Spectroscopy, Fourier Transform Infrared
3.
Chemosphere ; 349: 140838, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38043612

ABSTRACT

In this comprehensive study, Ce-doped ZnO nanostructures were hydrothermally synthesized with varying Ce concentrations (0.5%, 1.0%, 1.5%, and 2.0%) to explore their gas-sensing capabilities, particularly towards NO2. Structural characterization revealed that as Ce doping increased, crystal size exhibited a slight increment while band gap energies decreased. Notably, the 0.5% Ce-doped ZnO nanostructure demonstrated the highest NO2 gas response of 8.6, underscoring the significance of a delicate balance between crystal size and band gap energy for optimal sensing performance. The selectivity of the 0.5% Ce-doped ZnO nanostructures to NO2 over other gases like H2, acetone, NH3, and CO at a concentration of 100 ppm and an optimized temperature of 250 °C was exceptional, highlighting its discriminatory prowess even in the presence of potential interfering gases. Furthermore, the sensor displayed reliability and reversibility during five consecutive tests, showcasing consistent performance. Long-term stability testing over 30 days revealed that the gas response remained almost constant, indicating the sensor's remarkable durability. In addition to its robustness against humidity variations, maintaining effectiveness even at 41% humidity, the sensor exhibited impressive response and recovery times. While the response time was swift at 11.8 s, the recovery time was slightly prolonged at 56.3 s due to the strong adsorption of NO2 molecules onto the sensing material hindering the desorption process. The study revealed the intricate connection between Ce-doping levels, structure, and gas-sensing. It highlighted the 0.5% Ce-doped ZnO nanostructure as a highly selective, reliable, and durable NO2 gas sensor, with implications for future environmental monitoring and safety.


Subject(s)
Nitrogen Dioxide , Zinc Oxide , Reproducibility of Results , Acetone , Gases
4.
Materials (Basel) ; 16(14)2023 Jul 21.
Article in English | MEDLINE | ID: mdl-37512422

ABSTRACT

Environmental pollution is steadily rising and is having a negative influence on all living things, especially human beings. The advancement of nanoscience in recent decades has provided potential to address this issue. Functional metal oxide nanoparticles/nanofibers have been having a pull-on effect in the biological and environmental domains of nanobiotechnology. Current work, for the first time, is focusing on the electrospinning production of Zr0.5Sn0.5TiO3/SnO2 ceramic nanofibers that may be utilized to battle lethal infections swiftly and inexpensively. By using characterizations like XRD, FT-IR, FESEM, TEM, PL, and UV-Vis-DRS, the composition, structure, morphology, and optical absorption of samples were determined. The minimum inhibitory concentration (MIC) approach was used to investigate the antibacterial activity. Notably, this research indicated that nanofibers exert antibacterial action against both Gram-positive and Gram-negative bacteria with a MIC of 25 µg/mL. Furthermore, negatively charged E. coli was drawn to positively charged metal ions of Zr0.5Sn0.5TiO3/SnO2, which showed a robust inhibitory effect against E. coli. It was interesting to discover that, compared to pure TiO2, Zr0.5Sn0.5TiO3/SnO2 nanofibers revealed increased photocatalytic activity and exceptional cyclability to the photodegradation of Rhodamine B. The composite completely degrades dye in 30 min with 100% efficacy and excellent (97%) reusability. The synergetic effects of Zr0.5Sn0.5TiO3 and SnO2 may be responsible for increased photocatalytic and bactericidal activity.

5.
Materials (Basel) ; 16(9)2023 Apr 23.
Article in English | MEDLINE | ID: mdl-37176198

ABSTRACT

Functional materials have long been studied for a variety of environmental applications, resource rescue, and many other conceivable applications. The present study reports on the synthesis of bismuth vanadate (BiVO4) integrated polyaniline (PANI) using the hydrothermal method. The topology of BiVO4 decked PANI catalysts was investigated by SEM and TEM. XRD, EDX, FT-IR, and antibacterial testing were used to examine the physicochemical and antibacterial properties of the samples, respectively. Microscopic images revealed that BiVO4@PANI are comprised of BiVO4 hollow cages made up of nanobeads that are uniformly dispersed across PANI tubes. The PL results confirm that the composite has the lowest electron-hole recombination compared to others samples. BiVO4@PANI composite photocatalysts demonstrated the maximum degradation efficiency compared to pure BiVO4 and PANI for rhodamine B dye. The probable antimicrobial and photocatalytic mechanisms of the BiVO4@PANI photocatalyst were proposed. The enhanced antibacterial and photocatalytic activity could be attributed to the high surface area and combined impact of PANI and BiVO4, which promoted the migration efficiency of photo-generated electron holes. These findings open up ways for the potential use of BiVO4@PANI in industries, environmental remediation, pharmaceutical and medical sectors. Nevertheless, biocompatibility for human tissues should be thoroughly examined to lead to future improvements in photocatalytic performance and increase antibacterial efficacy.

6.
Nanomaterials (Basel) ; 13(6)2023 Mar 10.
Article in English | MEDLINE | ID: mdl-36985895

ABSTRACT

Bacterial infections remain a serious and pervasive threat to human health. Bacterial antibiotic resistance, in particular, lowers treatment efficacy and increases mortality. The development of nanomaterials has made it possible to address issues in the biomedical, energy storage, and environmental fields. This paper reports the successful synthesis of CeO2-SnO2 composite nanofibers via an electrospinning method using polyacrylonitrile polymer. Scanning and transmission electron microscopy assessments showed that the average diameter of CeO2-SnO2 nanofibers was 170 nm. The result of photocatalytic degradation for methylene blue dye displayed enhanced efficiency of the CeO2-SnO2 composite. The addition of SnO2 to CeO2 resulted in the enhancement of the light absorption property and enriched charge transmission of photoinduced electron-hole duos, which conspicuously contributed to momentous photoactivity augmentation. Composite nanofibers exhibited higher specific capacitance which may be accredited to the synergism between CeO2 and SnO2 particles in nanofibers. Furthermore, antibacterial activity was screened against Escherichia coli and CeO2-SnO2 composite nanofibers depicted excellent activity. The findings of this work point to new possibilities as an electrode material in energy storage systems and as a visible-light-active photocatalyst for the purification of chemical and biological contaminants, which would substantially benefit environmental remediation processes.

SELECTION OF CITATIONS
SEARCH DETAIL
...