Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Genome Biol Evol ; 16(4)2024 04 02.
Article in English | MEDLINE | ID: mdl-38401265

ABSTRACT

While mutational processes operating in the Escherichia coli genome have been revealed by multiple laboratory experiments, the contribution of these processes to accumulation of bacterial polymorphism and evolution in natural environments is unknown. To address this question, we reconstruct signatures of distinct mutational processes from experimental data on E. coli hypermutators, and ask how these processes contribute to differences between naturally occurring E. coli strains. We show that both mutations accumulated in the course of evolution of wild-type strains in nature and in the lab-grown nonmutator laboratory strains are explained predominantly by the low fidelity of DNA polymerases II and III. By contrast, contributions specific to disruption of DNA repair systems cannot be detected, suggesting that temporary accelerations of mutagenesis associated with such disruptions are unimportant for within-species evolution. These observations demonstrate that accumulation of diversity in bacterial strains in nature is predominantly associated with errors of DNA polymerases.


Subject(s)
Escherichia coli Proteins , Escherichia coli , Escherichia coli/genetics , Escherichia coli Proteins/genetics , Mutation , DNA-Directed DNA Polymerase/genetics , Mutagenesis , Bacteria/genetics , DNA, Bacterial/genetics
2.
Genome Biol Evol ; 15(12)2023 Dec 01.
Article in English | MEDLINE | ID: mdl-38019573

ABSTRACT

Most characterized metazoan mitochondrial genomes are compact and encode a small set of proteins that are essential for oxidative phosphorylation, as well as rRNA and tRNA for their expression. However, in rare cases, invertebrate taxa have additional open reading frames (ORFs) in their mtDNA sequences. Here, we sequenced and analyzed the mitochondrial genome of a polychaete worm, Polydora cf. ciliata, part of whose life cycle takes place in low-oxygen conditions. In the mitogenome, we found three "ORFan" regions (544, 1,060, and 427 bp) that have no resemblance to any standard metazoan mtDNA gene but lack stop codons in one of the reading frames. Similar regions are found in the mitochondrial genomes of three other Polydora species and Bocardiella hamata. All five species share the same gene order in their mitogenomes, which differ from that of other known Spionidae mitogenomes. By analyzing the ORFan sequences, we found that they are under purifying selection pressure and contain conservative regions. The codon adaptation indices (CAIs) of the ORFan genes were in the same range of values as the CAI of conventional protein-coding genes in corresponding mitochondrial genomes. The analysis of the P. cf. ciliata mitochondrial transcriptome showed that ORFan-544, ORFan-427, and a portion of the ORFan-1060 are transcribed. Together, this suggests that ORFan-544 and ORFan-427 encode functional proteins. It is likely that the ORFans originated when the Polydora/Bocardiella species complex separated from the rest of the Spionidae, and this event coincided with massive gene rearrangements in their mitochondrial genomes and tRNA-Met duplication.


Subject(s)
Genome, Mitochondrial , Animals , DNA, Mitochondrial/genetics , Base Sequence , Proteins/genetics , RNA, Transfer/genetics , Phylogeny
3.
Mitochondrial DNA B Resour ; 6(11): 3190-3192, 2021.
Article in English | MEDLINE | ID: mdl-34660899

ABSTRACT

In this study, five new mitogenomes from four endemic Lake Baikal sculpins were determined: Cottocomephorus grewingkii (Dybowski, 1874) (GB#MW732165), Cottocomephorus inermis (Yakovlev, 1890) (GB#MW732163), and Paracottus knerii (Dybowski, 1874) (GB#MW732164) (Family Cottocomephoridae - Bighead sculpins), and from two specimens of Procottus major Taliev, 1949 (GB##MW732166, MW732167) from Family Abyssocottidae (Deep-water sculpins). Together with recently published mitogenomes of Baikal Oilfishes (Sandel et al. 2017), the first mitogenome-based phylogenetic tree for all three endemic Baikal sculpin families is presented. Complete mitogenome phylogeny supports the monophyletic origin of the lake Baikal sculpins species flock, but does not support the monophyly of the family Cottocomephoridae (Bighead sculpins).

4.
Cells ; 8(9)2019 09 05.
Article in English | MEDLINE | ID: mdl-31491936

ABSTRACT

BACKGROUND: Transposons are selfish genetic elements that self-reproduce in host DNA. They were active during evolutionary history and now occupy almost half of mammalian genomes. Close insertions of transposons reshaped structure and regulation of many genes considerably. Co-evolution of transposons and host DNA frequently results in the formation of new regulatory regions. Previously we published a concept that the proportion of functional features held by transposons positively correlates with the rate of regulatory evolution of the respective genes. METHODS: We ranked human genes and molecular pathways according to their regulatory evolution rates based on high throughput genome-wide data on five histone modifications (H3K4me3, H3K9ac, H3K27ac, H3K27me3, H3K9me3) linked with transposons for five human cell lines. RESULTS: Based on the total of approximately 1.5 million histone tags, we ranked regulatory evolution rates for 25075 human genes and 3121 molecular pathways and identified groups of molecular processes that showed signs of either fast or slow regulatory evolution. However, histone tags showed different regulatory patterns and formed two distinct clusters: promoter/active chromatin tags (H3K4me3, H3K9ac, H3K27ac) vs. heterochromatin tags (H3K27me3, H3K9me3). CONCLUSION: In humans, transposon-linked histone marks evolved in a coordinated way depending on their functional roles.


Subject(s)
Chromatin/genetics , Evolution, Molecular , Histone Code , Histones/genetics , Chromatin/chemistry , Chromatin Assembly and Disassembly , DNA Transposable Elements , Histones/chemistry , Humans , Models, Genetic
SELECTION OF CITATIONS
SEARCH DETAIL
...