Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Trials ; 25(1): 27, 2024 Jan 05.
Article in English | MEDLINE | ID: mdl-38183062

ABSTRACT

BACKGROUND: The gliding surface of total knee endoprostheses is exposed to high loads due to patient weight and activity. These implant components are typically manufactured from ultra-high molecular weight polyethylene (UHMWPE). Crosslinking of UHMWPE by ionizing radiation results in higher wear resistance but induces the formation of free radicals which impair mechanical properties after contact with oxygen. Medium-crosslinked UHMWPE enriched with vitamin E (MXE) provides a balance between the parameters for a sustainable gliding surface, i.e., mechanical strength, wear resistance, particle size, and oxidation stability. Therefore, a gliding surface for knee endoprostheses made up from this material was developed, certified, and launched. The aim of this study is to compare this new gliding surface to the established predecessor in a non-inferiority design. METHODS: This multicenter, binational randomized controlled trial will enroll patients with knee osteoarthritis eligible for knee arthroplasty with the index device. Patients will be treated with a knee endoprosthesis with either MXE or a standard gliding surface. Patients will be blinded regarding their treatment. After implantation of the devices, patients will be followed up for 10 years. Besides clinical and patient-related outcomes, radiological data will be collected. In case of revision, the gliding surface will be analyzed biomechanically and regarding the oxidative profile. DISCUSSION: The comparison between MXE and the standard gliding surface in this study will provide clinical data to confirm preceding biomechanical results in vivo. It is assumed that material-related differences will be identified, i.e., that the new material will be less sensitive to wear and creep. This may become obvious in biomechanical analyses of retrieved implants from revised patients and in radiologic analyses. TRIAL REGISTRATION: ClinicalTrials.gov, NCT04618016. Registered 27 October 2020, https://clinicaltrials.gov/study/NCT04618016?term=vikep&checkSpell=false&rank=1 . All items from the World Health Organization Trial Registration Data Set can be found in Additional file 1.


Subject(s)
Arthroplasty, Replacement, Knee , Polyethylene , Humans , Arthroplasty, Replacement, Knee/adverse effects , Knee Joint , Oxidation-Reduction , Randomized Controlled Trials as Topic , Multicenter Studies as Topic
2.
J Clin Med ; 12(22)2023 Nov 18.
Article in English | MEDLINE | ID: mdl-38002775

ABSTRACT

BACKGROUND: The number of total knee replacements performed annually is steadily increasing. Parallel options for postoperative care are decreasing, which reduces patient satisfaction. External devices to support physical rehabilitation and health monitoring will improve patient satisfaction and postoperative care. METHODS: In a prospective, international multicenter study, patients were asked to use an external motion sensor and a smartphone application during the postoperative course of primary total knee arthroplasty. The collected data were transferred to a data platform, allowing for the real-time evaluation of patient data. RESULTS: In three participating centers, 98 patients were included. The general acceptance of using the sensor and app was high, with an overall compliance in study participation rate of up to 76%. The early results showed a significant improvement in the overall quality of life (p < 0.001) and significant reductions in pain (p < 0.01) and depression (p < 0.001). CONCLUSIONS: The early results of this clinical and multicenter study emphasize that there is a high interest in and acceptance of digital solutions in patients' treatment pathways. Motion sensor and smartphone applications support patients in early rehabilitation.

SELECTION OF CITATIONS
SEARCH DETAIL
...