Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Cytogenet Genome Res ; 159(1): 32-38, 2019.
Article in English | MEDLINE | ID: mdl-31542782

ABSTRACT

Despite the variation observed in the diploid chromosome number of storks (Ciconiiformes, Ciconiidae), from 2n = 52 to 2n = 78, most reports have relied solely on analyses by conventional staining. As most species have similar macrochromosomes, some authors propose that karyotype evolution involves mainly fusions between microchromosomes, which are highly variable in species with different diploid numbers. In order to verify this hypothesis, in this study, the karyotypes of 2 species of storks from South America with different diploid numbers, the jabiru (Jabiru mycteria, 2n = 56) and the maguary stork (Ciconia maguary, 2n = 72), were analyzed by chromosome painting using whole chromosome probes from the macrochromosomes of Gallus gallus (GGA) and Leucopternis albicollis (LAL). The results revealed that J. mycteria and C. maguary share synteny within chromosome pairs 1-9 and Z. The syntenies to the macrochromosomes of G. gallus are conserved, except for GGA4, which is homologous to 2 different pairs, as in most species of birds. A fusion of GGA8 and GGA9 was observed in both species. Additionally, chromosomes corresponding to GGA4p and GGA6 are fused to other segments that did not hybridize to any of the macrochromosome probes used, suggesting that these segments correspond to microchromosomes. Hence, our data corroborate the proposed hypothesis that karyotype evolution is based on fusions involving microchromosomes. In view of the morphological constancy of the macrochromosome pairs in most Ciconiidae, we propose a putative ancestral karyotype for the family, including the GGA8/GGA9 fusion, and a diploid number of 2n = 78. The use of probes for microchromosome pairs should be the next step in identifying other synapomorphies that may help to clarify the phylogeny of this family.


Subject(s)
Birds/genetics , Chromosome Painting/veterinary , Chromosomes/genetics , Genetic Variation/genetics , Karyotype , Animals , Brazil , Diploidy , Evolution, Molecular , Female , Phylogeny
2.
Genet Mol Res ; 2(2): 223-8, 2003 Jun 30.
Article in English | MEDLINE | ID: mdl-14966688

ABSTRACT

The Canova Method (CM) is a homeopathic medicine indicated for the treatment of patients with cancer and for pathologies that involve a depressed immune system, such as AIDS. This product is composed of homeopathic dilutions of Aconitum napellus, Arsenicum album (arsenic trioxide), Bryonia alba, Lachesis muta venom and Thuya occidentalis. It stimulates the immune system by activating macrophages. Activated macrophages stimulate the lymphocytes so that they increase their cytotoxic action in response to tumoral growth or infection. Given that the CM stimulates and accelerates the activity of macrophages and lymphocytes, we evaluated genotoxic effects induced in human lymphocytes treated with this homeopathic medication in vitro. Structural and numerical chromosomal aberrations were scored for the assessment of induced genotoxic effects, while the variation in mitotic index was considered as a monitor for induced cellular toxicity. The lymphocytes were cultivated for 24, 48 or 72 h in the following final concentrations of the medicinal composite CM: 4, 8 and 12%. Treatments with the CM did not affect mitotic indexes, nor did they provoke chromosomal aberrations, when compared with untreated controls. There was no cytotoxicity or genotoxicity at the chromosomal level.


Subject(s)
Antineoplastic Agents/toxicity , Homeopathy , Lymphocytes/drug effects , Adult , Chromosome Aberrations , Cytogenetic Analysis , Female , Humans , In Vitro Techniques , Lymphocytes/cytology , Male , Mitotic Index , Mutagenicity Tests , Plant Extracts/toxicity
SELECTION OF CITATIONS
SEARCH DETAIL
...