Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
J Contam Hydrol ; 252: 104108, 2023 01.
Article in English | MEDLINE | ID: mdl-36404181

ABSTRACT

The mobility of contaminants in soil is controlled by sorption reactions which can be affected by the presence of other solutes that compete for sorption sites. The ability to model such effects is necessary for evaluating the environmental risk of a given contaminant. In this study, the competitive sorption and transport of nickel (Ni) and zinc (Zn) in Olivier and Windsor soils was investigated using batch equilibration and miscible displacement experiments. During batch experiments, the sorption of Ni and Zn was mutually reduced in multicomponent systems, indicating that the metal cations compete for sorption sites. When applied concurrently, the retardation of both ions decreased and peak effluent concentrations increased relative to single ion experiments, demonstrating that competition increased the mobility of both ions during miscible displacement experiments. A novel Freundlich-type multicomponent isotherm (CDI) and its kinetic analog (CDIT) were developed and compared to the commonly used SRS isotherm and SRS-based kinetic approach (SRST) in describing the experimental data. The CDI provided a superior description of the competitive batch data, especially at low surface coverage, and may therefore be more applicable to multicomponent sorption than the SRS. The Olivier and Windsor transport data were best described by the CDIT and SRST, respectively, however, both models generally described the data well. Since both approaches gave comparable descriptions of the transport data while the CDI outperformed the SRS in describing the batch data, the CDI/CDIT may be more generally applicable to multicomponent systems and warrants further study.


Subject(s)
Metals, Heavy , Nickel , Nickel/analysis , Soil , Zinc/analysis , Ions , Adsorption , Metals, Heavy/analysis
2.
J Environ Qual ; 51(6): 1168-1180, 2022 Nov.
Article in English | MEDLINE | ID: mdl-35985791

ABSTRACT

The behavior of metal cations in oxide-dominated systems is controlled by sorption reactions, which in turn depend on pH. Descriptions of such reactions are of interest for contaminant monitoring or remediation efforts; however, widely used isotherms such as Freundlich or Langmuir neglect the effect of pH and are therefore limited in their applicability. Two pH-dependent isotherms and their kinetic analogs were developed and evaluated regarding their ability to describe equilibrium and time-dependent sorption of Ni and Zn by Mn oxide-coated sand (MOCS). The sorption of Ni and Zn by MOCS at pH 4.0, 5.5, and 7.0 was investigated using batch equilibration and stirred-flow techniques. The affinity of MOCS for either metal cation was highly pH dependent, with greater affinity at higher pH. Both isotherms described the batch data well. Flow interruption during stirred-flow experiments indicated that chemical nonequilibrium existed between solution and sorbed phases of both Ni and Zn and that such nonequilibrium was greater with increasing pH. Both kinetic models provided good descriptions of the solution data from stirred-flow experiments and correctly captured the effect of pH on chemical nonequilibrium. These models offer simple alternatives to surface complexation approaches and are expected to be easily applied to describe equilibrium and time-dependent sorption of a wide range of metal cations by variably charged minerals or oxide-coated media.


Subject(s)
Oxides , Sand , Kinetics , Zinc
3.
Environ Sci Pollut Res Int ; 27(16): 20227-20234, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32239403

ABSTRACT

In this investigation, batch and column experiments were conducted to investigate the molybdenum (Mo) sorption and transport processes on a neutral-pH soil (Webster loam) and an acidic soil (Mahan sand) in Ca2+ and K+ background solutions. Batch results showed that the adsorption of Mo was strongly non-linear in both soils and amount of Mo sorbed in the acidic soil was larger than the neutral soil. The Freundlich distribution coefficients (Kf) and Langmuir sorption maxima (Smax) in Ca2+ background solution are larger than that in K+ solution, indicating greater Mo sorption in Ca2+ than in K+. Experimental breakthrough curves (BTCs) demonstrated that mobility of Mo was higher at neutral condition than that at acidic condition. A multi-reaction transport model (MRTM) formulation with two kinetic retention reactions (reversible and irreversible) well described Mo transport for Webster soil. However, MRTM model which accounts for equilibrium and kinetic sites is recommended for Mo transport in Mahan soil, reflecting different soil properties. Based on inverse modeling, the sorption forward rate coefficients (k1) obtained from Ca2+ in both soils are larger than that from K+, which consistent with batch experiment. Overall, MRTM model was capable of describing the Mo transport behavior under different geochemical conditions.


Subject(s)
Soil Pollutants/analysis , Soil , Adsorption , Kinetics , Molybdenum
4.
J Environ Qual ; 48(3): 686-693, 2019 May.
Article in English | MEDLINE | ID: mdl-31180437

ABSTRACT

Quantitative understanding of the mechanisms controlling the competitive retention and transport of V and phosphate on soils is essential for accurately evaluating the environmental risks of contaminants in the environment. Batch and stir-flow chamber experiments were performed to quantify the extent of kinetics of V and phosphate competitive retention in an acidic soil (Sharkey clay). In this study, a stir-flow model was used to describe tracer and competitive reactive solute adsorption, and desorption processes in soils. Based on optimized and predictive modeling results, a fully reversible-irreversible multi-reaction model successfully described the time-dependent competitive V and phosphate retention and transport process in Sharkey soil. Adsorption for V and phosphate were highly nonlinear and time dependent, where V binding affinities were stronger than those for phosphate. Results from batch experiments indicated that that the rate and extent (amount) of V released increased significantly in the presence of phosphate. Breakthrough curves for V, from stir-flow experiments, were asymmetrical and exhibited slow release or tailing, indicating that nonequilibrium retention on the surface of soil was the dominant mechanism of the time-dependent adsorption of V. Results of stir-flow experiments indicated that increased mobility of V was observed in the presence of phosphate caused by direct competition for available retention sites. In conclusion, increased addition of phosphate causes decreasing sorption capacity and increasing mobility of V and needs to be considered in modeling the fate and transport of V in soil.


Subject(s)
Soil Pollutants , Soil , Adsorption , Kinetics , Phosphates , Vanadium
5.
J Environ Qual ; 48(1): 156-163, 2019 01.
Article in English | MEDLINE | ID: mdl-30640360

ABSTRACT

The purpose of this study was to determine the effect of PO on the sorption and transport of glyphosate [-(phosphonomethyl) glycine, GPS] in soils. The results of batch experiments indicated significant competition between PO and GPS in two different soils, with PO being preferentially sorbed. The 24-h Freundlich partitioning coefficients for GPS sorption were decreased by 50 to 60% with PO in solution. High sorptive capacities exhibited by soils in the presence of PO suggest the existence of both competitive and ion specific sites in either soil. Miscible displacement transport studies indicated limited effects of competition when GPS was applied in conjunction with or subsequent to pulses of PO. However, when a PO pulse was applied after the application of a GPS pulse, a secondary GPS breakthrough was observed where an additional 4% of the applied herbicide mass was recovered in the effluent solution. This is likely attributed to the PO-mediated displacement of GPS bound to competitive sites. These results are further emphasized by the distribution of residual herbicide in this column, with enrichment of mass at lower depths in the column and a corresponding decrease in GPS mass closer to the column surface. These results indicate that the timing of inorganic P fertilizers relative to GPS applications has a significant impact on the fate of the herbicide in soils. In particular, these findings suggest that GPS may be more liable to leaching in scenarios in which P fertilizers are applied after the application of GPS-based herbicidal formulations.


Subject(s)
Soil Pollutants , Soil , Adsorption , Glycine/analogs & derivatives , Phosphates , Glyphosate
6.
J Environ Qual ; 47(3): 504-512, 2018 May.
Article in English | MEDLINE | ID: mdl-29864189

ABSTRACT

Much uncertainty exists in mechanisms and kinetics controlling the adsorption and desorption of molybdenum (Mo) in the soil environment. To investigate the characteristics of Mo adsorption and desorption and predict Mo behavior in the vadose zone, kinetic batch experiments were performed using three soils: Webster loam, Windsor sand and Mahan sand. Adsorption isotherms for Mo were strongly nonlinear for all three soils. Strong kinetic adsorption of Mo by all soils was also observed, where the rate of retention was rapid initially and was followed by slow retention behavior with time. The time-dependent Mo sorption rate was not influenced when constant pH was maintained. Desorption or release results indicated that there were significant fractions of Mo that appeared to be irreversible or slowly reversibly sorbed by Windsor and Mahan. X-ray absorption near edge structure (XANES) analysis for Windsor and Mahan soils indicated that most of Mo had been bound to kaolinite, whereas Webster had similar XANES features to those of Mo sorbed to montmorillonite. A sequential extraction procedure provided evidence that a significant amount of Mo was irreversibly sorbed. A multireaction model (MRM) with nonlinear equilibrium and kinetic sorption parameters was used to describe the adsorption-desorption kinetics of Mo on soils. Our results demonstrated that a formulation of MRM with two sorption sites (equilibrium and reversible) successfully described Mo adsorption-desorption data for Webster loam, and an additional irreversible reaction phase was recommended to describe Mo desorption or release with time for Windsor and Mahan soils.


Subject(s)
Molybdenum/chemistry , Soil Pollutants/chemistry , Adsorption , Kinetics , Soil
SELECTION OF CITATIONS
SEARCH DETAIL
...