Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Helicobacter ; 29(4): e13110, 2024.
Article in English | MEDLINE | ID: mdl-39001634

ABSTRACT

BACKGROUND: Antimicrobial-resistant Helicobacter pylori (H. pylori) poses a significant public health concern, especially given the limited therapeutic options for azithromycin-resistant strains. Hence, there is a necessity for new studies to reconsider the use of azithromycin, which has diminished in effectiveness against numerous strains. Thus, we aimed to augment azithromycin's anti-Helicobacter properties by combining it with curcumin in different formulations, including curcumin in clove oil, curcumin nano-gold emulsion, and curcumin nanoemulsion. METHODS: The antimicrobial activities of the investigated compounds, both individually and in combination with other anti-Helicobacter drugs, were evaluated. Their antibiofilm and anti-virulence properties were assessed using both phenotypic and genotypic methods, alongside molecular docking studies. Our findings were further validated through mouse protection assays and histopathological analysis. RESULTS: We observed high anti-Helicobacter activities of curcumin, especially curcumin nanoemulsion. A synergistic effect was detected between curcumin nanoemulsion and azithromycin with fraction inhibitory concentration index (FICI) values <0.5. The curcumin nanoemulsion was the most active anti-biofilm and anti-virulence compound among the examined substances. The biofilm-correlated virulence genes (babA and hopQ) and ureA genes were downregulated (fold change <1) post-treatment with curcumin nanoemulsion. On the protein level, the anti-virulence activities of curcumin nanoemulsion were documented based on molecular docking studies. These findings aligned with histopathological scoring of challenge mice, affirming the superior efficacy of curcumin nanoemulsion/azithromycin combination. CONCLUSION: The anti-Helicobacter activities of all curcumin physical forms pose significant challenges due to their higher  minimum inhibitory concentration (MIC) values exceeding the maximum permissible level. However, using curcumin nanoemulsion at sub-MIC levels could enhance the anti-Helicobacter activity of azithromycin and exhibit anti-virulence properties, thereby improving patient outcomes and addressing resistant pathogens. Therefore, more extensive studies are necessary to assess the safety of incorporating curcumin nanoemulsion into H. pylori treatment.


Subject(s)
Anti-Bacterial Agents , Azithromycin , Biofilms , Curcumin , Helicobacter Infections , Molecular Docking Simulation , Azithromycin/pharmacology , Azithromycin/chemistry , Animals , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Mice , Biofilms/drug effects , Curcumin/pharmacology , Curcumin/chemistry , Helicobacter Infections/drug therapy , Helicobacter Infections/microbiology , Helicobacter pylori/drug effects , Helicobacter pylori/genetics , Microbial Sensitivity Tests , Drug Synergism , Biological Products/pharmacology , Biological Products/chemistry , Virulence/drug effects , Female
2.
BMC Microbiol ; 24(1): 262, 2024 Jul 18.
Article in English | MEDLINE | ID: mdl-39026170

ABSTRACT

BACKGROUND: The ineffectiveness of treatments for infections caused by biofilm-producing pathogens and human carcinoma presents considerable challenges for global public health organizations. To tackle this issue, our study focused on exploring the potential of synthesizing new complexes of Co(II), Cu(II), Ni(II), and Zn(II) with sorbic acid to enhance its antibacterial, antibiofilm, and anticancer properties. METHODS: Four novel complexes were synthesized as solid phases by reacting sorbic acid with Co(II), Cu(II), Ni(II), and Zn(II). These complexes were characterized by various technique, including infrared spectra, UV-Visible spectroscopy, proton nuclear magnetic resonance (1H NMR), and thermal analysis techniques, including thermogravimetry (TG). RESULTS: The data acquired from all investigated chemical characterization methods confirmed the chemical structure of the sorbate metal complexes. These complexes exhibited antibacterial and antibiofilm properties against both Gram-positive and Gram-negative bacteria. Furthermore, these complexes enhanced the antibacterial effects of commonly used antibiotics, such as gentamicin and imipenem, with fractional inhibitory concentration (FIC) indices ≤ 0.5. Notably, the Cu(II) complex displayed the most potent antibacterial and antibiofilm activities, with minimum inhibitory concentration (MIC) values of 312.5 µg/mL and 625.0 µg/mL for Bacillus cereus and Escherichia coli, respectively. Additionally, in vitro assays using the methyl thiazolyl tetrazolium (MTT) method showed inhibitory effects on the growth of the human colon carcinoma cell line (HCT-116 cells) following treatment with the investigated metal complexes. The IC50 values for Co(II), Cu(II), Zn(II), and Ni(II) were 3230 µg/mL, 2110 µg/mL, 3730 µg/mL, and 2240 µg/mL, respectively. CONCLUSION: Our findings offer potential for pharmaceutical companies to explore the development of novel combinations involving traditional antibiotics or anticancer drugs with sorbate copper complex.


Subject(s)
Anti-Bacterial Agents , Antineoplastic Agents , Biofilms , Coordination Complexes , Microbial Sensitivity Tests , Biofilms/drug effects , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Humans , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Coordination Complexes/pharmacology , Coordination Complexes/chemistry , Coordination Complexes/chemical synthesis , Sorbic Acid/pharmacology , Sorbic Acid/chemistry , Gram-Positive Bacteria/drug effects , Gram-Negative Bacteria/drug effects , Cell Line, Tumor , Cell Survival/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...