Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Neuroimage ; 292: 120573, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38521211

ABSTRACT

Overcoming sex bias in preclinical research requires not only including animals of both sexes in the experiments, but also developing proper tools to handle such data. Recent work revealed sensitivity of diffusion-weighted MRI to glia morphological changes in response to inflammatory stimuli, opening up exciting possibilities to characterize inflammation in a variety of preclinical models of pathologies, the great majority of them available in mice. However, there are limited resources dedicated to mouse imaging, like those required for the data processing and analysis. To fill this gap, we build a mouse MRI template of both structural and diffusion contrasts, with anatomical annotation according to the Allen Mouse Brain Atlas, the most detailed public resource for mouse brain investigation. To achieve a standardized resource, we use a large cohort of animals in vivo, and include animals of both sexes. To prove the utility of this resource to integrate imaging and molecular data, we demonstrate significant association between the mean diffusivity from MRI and gene expression-based glia density. To demonstrate the need of equitable sex representation, we compared across sexes the warp fields needed to match a male-based template, and our template built with both sexes. Then, we use both templates for analysing mice imaging data obtained in animals of different ages, demonstrating that using a male-based template creates spurious significant sex effects, not present otherwise. All in all, our MouseX DW-ALLEN Atlas will be a widely useful resource getting us one step closer to equitable healthcare.


Subject(s)
Brain , Diffusion Magnetic Resonance Imaging , Animals , Female , Male , Mice , Diffusion Magnetic Resonance Imaging/methods , Brain/diagnostic imaging , Atlases as Topic , Sex Characteristics , Neuroglia , Mice, Inbred C57BL
2.
Psychiatry Clin Neurosci ; 78(3): 176-185, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38085120

ABSTRACT

AIM: Alcohol use disorder (AUD) is the most prevalent form of addiction, with a great burden on society and limited treatment options. A recent clinical trial reported significant clinical benefits of deep transcranial magnetic stimulations (Deep TMS) targeting midline frontocortical areas. However, the underlying biological substrate remained elusive. Here, we report the effect of Deep TMS on the microstructure of white matter. METHODS: A total of 37 (14 females) AUD treatment-seeking patients were randomized to sham or active Deep TMS. Twenty (six females) age-matched healthy controls were included. White matter integrity was evaluated by fractional anisotropy (FA). Secondary measures included brain functional connectivity and self-reports of craving and drinking units in the 3 months of follow-up period. RESULTS: White matter integrity was compromised in patients with AUD relative to healthy controls, as reflected by the widespread reduction in FA. This alteration progressed during early abstinence (3 weeks) in the absence of Deep TMS. However, stimulation of midline frontocortical areas arrested the progression of FA changes in association with decreased craving and relapse scores. Reconstruction of axonal tracts from white-matter regions showing preserved FA values identified cortical regions in the posterior cingulate and dorsomedial prefrontal cortices where functional connectivity was persistently modulated. These effects were absent in the sham-stimulated group. CONCLUSIONS: By integrating brain structure and function to characterize the alcohol-dependent brain, this study provides mechanistic insights into the TMS effect, pointing to myelin plasticity as a possible mediator.


Subject(s)
Alcoholism , White Matter , Female , Humans , Alcoholism/therapy , White Matter/diagnostic imaging , Brain , Ethanol , Alcohol Drinking , Anisotropy
3.
Acta Neuropathol Commun ; 11(1): 101, 2023 06 21.
Article in English | MEDLINE | ID: mdl-37344865

ABSTRACT

INTRODUCTION: Alcohol dependence is characterized by a gradual reduction in cognitive control and inflexibility to contingency changes. The neuroadaptations underlying this aberrant behavior are poorly understood. Using an animal model of alcohol use disorders (AUD) and complementing diffusion-weighted (dw)-MRI with quantitative immunohistochemistry and electrophysiological recordings, we provide causal evidence that chronic intermittent alcohol exposure affects the microstructural integrity of the fimbria/fornix, decreasing myelin basic protein content, and reducing the effective communication from the hippocampus (HC) to the prefrontal cortex (PFC). Using a simple quantitative neural network model, we show how disturbed HC-PFC communication may impede the extinction of maladaptive memories, decreasing flexibility. Finally, combining dw-MRI and psychometric data in AUD patients, we discovered an association between the magnitude of microstructural alteration in the fimbria/fornix and the reduction in cognitive flexibility. Overall, these findings highlight the vulnerability of the fimbria/fornix microstructure in AUD and its potential contribution to alcohol pathophysiology. Fimbria vulnerability to alcohol underlies hippocampal-prefrontal cortex dysfunction and correlates with cognitive impairment.


Subject(s)
Alcoholism , Animals , Diffusion Magnetic Resonance Imaging , Fornix, Brain/physiology , Hippocampus/physiology , Prefrontal Cortex/physiology , Ethanol
SELECTION OF CITATIONS
SEARCH DETAIL
...