Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
1.
Sci Rep ; 14(1): 1088, 2024 Jan 11.
Article in English | MEDLINE | ID: mdl-38212330

ABSTRACT

In this research nylon fibers wastes (NF) were fabricated into porous sheet using a phase inversion technique to be utilized as an adsorbent materials for Congo red dye (CR). The fabricated sheet denoted as NS was characterized using FTIR and XRD. The surface studies of the adsorbent materials using SEM and BET analysis reveals a highly pores structure with an average pore volume 0.61 cc/g and BET surface area of 767 m2/g. The adsorption studies of fabricated NS were employed into CR at different parameters as pH, effect of time and dye concentration. The adsorption isotherm and kinetic studies were more fit to Langmuir and pseudo second order models. The maximum adsorption capacity qmax reached 188 mg/g with removal percentage of 95 for CR concentration of 400 mg/L at pH 6 and 0.025 g NS dose for 10 ml CR solution. The regeneration study reveals a prominent adsorption behavior of NS with removal % of 88.6 for CR (300 mg/L) after four adsorption desorption cycles. Effect of incorporation of NaonFil Clay to NS was studied using Response Surface Methodology (RSM) modeling and reveals that 98.4% removal of CR could be achieved by using 19.35% wt. of fiber with 8.2 g/L dose and zero clay, thus at a predetermined parameters studies of NanoFil clay embedded into NS, there are no significant effect for %R for CR.

2.
Sci Rep ; 11(1): 10441, 2021 05 17.
Article in English | MEDLINE | ID: mdl-34001936

ABSTRACT

Feline mammary carcinoma (FMC) shows great similarities to human breast cancer in the cellular and molecular levels. So, in cats as in humans, the role of immune responses is indicated to detect and follow up the development of tumors. As a new breast cancer therapeutic approach, Plasmonic Photothermal Therapy (PPTT) is an effective localized treatment for canine and feline mammary-carcinoma. Its systemic effect has not been inquired yet and needs many studies to hypothesis how the PPTT eradicates tumor cells. In this study, it is the first time to detect (P53, PCNA, MUC-1, and C-MYC) feline autoantibodies (AAbs), study the relationship between PCNA AAbs and mammary-tumors, and investigate the effect of PPTT on the humoral immune response of cats with mammary-carcinoma through detection of AAbs level before, during, and after the treatment. The four-AAbs panel was evaluated in serum of normal and clinically diagnosed cats with mammary tumors using Enzyme-Linked Immunosorbent Assay. The panel showed 100% specificity and 93.7% sensitivity to mammary tumors. The panel was evaluated in PPTT monotherapy, mastectomy monotherapy, and combination therapy. PPTT monotherapy decreased AAbs level significantly while mastectomy monotherapy and combination therapy had a nonsignificant effect on AAbs level.


Subject(s)
Autoantibodies/blood , Carcinoma/diagnosis , Cat Diseases/diagnosis , Mammary Neoplasms, Animal/diagnosis , Photothermal Therapy/methods , Animals , Autoantibodies/immunology , Carcinoma/blood , Carcinoma/immunology , Carcinoma/therapy , Cat Diseases/blood , Cat Diseases/immunology , Cat Diseases/therapy , Cats , Combined Modality Therapy/methods , Early Detection of Cancer/methods , Enzyme-Linked Immunosorbent Assay , Female , Mammary Neoplasms, Animal/blood , Mammary Neoplasms, Animal/immunology , Mammary Neoplasms, Animal/therapy , Mastectomy , Treatment Outcome
3.
RSC Adv ; 11(40): 25047-25056, 2021 Jul 13.
Article in English | MEDLINE | ID: mdl-35481041

ABSTRACT

Tumor associated macrophages (TAM) are key pathogenic factors in neoplastic diseases. They are known to have plasticity and can polarize into two opposing phenotypes, including the tumoricidal M1 and the protumoral M2 phenotypes with high prevalence of M2-phentoypes in patients with poor prognosis. Strategies for targeting M2-TAM may consequently increase the efficacy of therapeutic strategies for cancer treatment. Gold nanorod-assisted plasmonic photothermal therapy (PPTT) has emerged as a promising treatment for cancer but the effects of macrophage polarization parameters in the performance of this new treatment modality is still unknown. Herein, human monocytic THP-1 cells were polarized into two opposite phenotypic macrophages (M1-TAM and M2-TAM) and their response to PPTT was examined. M2-TAM exhibits a three-fold increase in AuNP uptake compared to M1-TAM. Laser irradiation results in selective killing of pro-tumoral M2-TAM after treatment with AuNPs with limited effects on anti-tumoral M1-TAM. A positive correlation between the expression of CD206 marker and the AuNP uptake may indicate the role of CD206 in facilitating AuNP uptake. Our findings also suggest that the differences in AuNP avidity and uptake between the M1-TAM and M2-TAM phenotypes may be the rationale behind the effectiveness of PPTT in the treatment of solid tumors.

4.
Vet World ; 13(12): 2578-2586, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33487974

ABSTRACT

BACKGROUND AND AIM: Q fever is considered a neglected zoonotic disease and is caused by Coxiella burnetii. Very little information is available on C. burnetii infections in cattle, sheep, and goat populations in Egypt. The aim of this study was to identify the seroprevalence of C. burnetii in humans and livestock and to test for the presence of C. burnetii DNA in sera from seropositive animals and humans. MATERIALS AND METHODS: Blood samples were collected from 160 apparently healthy farm animals and 120 patients from three hospitals of the Assiut Governorate throughout 2017/2018. These populations were tested for antibodies against C. burnetii phase II antigen by immunofluorescence assay [IFA] and enzyme-linked immunosorbent assay (ELISA). Seropositive samples were subjected to real-time quantitative polymerase chain reaction (RT-qPCR). RESULTS: The results of the IFA revealed C. burnetii seroprevalence rates of 45.3%, 56.0%, 45.7%, and 53.3% in cattle, sheep, goats, and humans, respectively. In humans, the seroprevalence rates were 52.1%, 30.4%, 37.5%, 74.1%, and 62.5% in patients with fever of unknown origin, influenza, kidney dialysis, hepatitis C virus, and hepatitis B virus, respectively. Likewise, by ELISA, the seroprevalence in bovine was 50.7%; sheep, 60.0%; goats, 51.4%; and humans, 55.0% (54.3%, 30.4%, 37.5%, 77.8%, and 62.5% in patients with fever of unknown origin, influenza, kidney dialysis, hepatitis C virus, and hepatitis B virus, respectively). RT-qPCR targeting the repetitive element IS1111 confirmed the presence of C. burnetii DNA. CONCLUSION: These results proved that apparently healthy cattle, sheep, and goats may be very important reservoirs of C. burnetii infection. In light of these data, the effect of Q fever on the replication of hepatitis virus remains unclear. Although hepatitis is one of the main aspects of acute Q fever, the influence of hepatitis on Q fever remains to be investigated. Q fever is not a reportable disease in Egypt, and clinical cases may rarely be recognized by the health-care system. Additional information on the epidemiology of C. burnetii in Egypt is warranted, including other associated problems such as the distribution of infections, pathologic hallmarks, and molecular typing.

5.
Foodborne Pathog Dis ; 17(6): 373-381, 2020 06.
Article in English | MEDLINE | ID: mdl-31755782

ABSTRACT

The current study investigated the emergence of multidrug-resistance (MDR), extended-spectrum beta-lactamase (ESBL)-producing Salmonella enterica serovar Heidelberg in broiler chickens and workers in poultry farms. A total of 33 S. Heidelberg isolates were recovered; 24 from the broiler cloacal swabs and 9 from the farm workers. All the S. Heidelberg isolates were tested for susceptibility to 11 antimicrobial agents and for the presence of resistance and virulence genes. MDR strains were found in 95.8% (23/24) and 88.8% (8/9) of the broiler and human isolates, respectively. Among the MDR strains, 66.6% of the broiler isolates and 55.5% of the human isolates were ESBL producing. The majority of broiler isolates showed resistance to ampicillin (100%) and ceftriaxone (91.6%), followed by ceftazidime and imipenem, (87.5%) and (75%). The resistance rate of the human isolates to those antibiotics were lower than the broiler isolates; ampicillin (88.8%), ceftriaxone (66.6%), ceftazidime (77.7%), and imipenem (66.6%). The resistance determinant genes found among the isolated strains was blaSHV-1, blaTEM-1, blaCMY-2, blaOXA-1, blaCMY-M2, blaPSE-1, and ampC. The most detected ESBL genes for broiler and human isolates were ampC (63.7%) and blaSHV-1 (56.6%), followed by blaCMY-M2 (48.5%), blaTEM-1 (39.4%), and blaOXA-1 (27.3%); whereas blaCMY-2 and blaPSE-1 were not detected. The finding of chromosomal and plasmid virulence genes revealed that the invA (100%), stn, sipC, and rck (72.8%), spvC (66.7%), ssr (63.6%), sopB (54.6%), and hilA and sipA (3.0%), while pefA and ssaR were absent. An elevated rate of MDR Salmonella Heidelberg in chickens is of potential great health risk. This signifies the role of the food of animal origin as a reservoir of MDR Salmonella that can affect the human health.


Subject(s)
Anti-Bacterial Agents/pharmacology , Drug Resistance, Multiple, Bacterial , Salmonella enterica/drug effects , beta-Lactamases/metabolism , Animals , Bacterial Proteins/pharmacology , Chickens/microbiology , DNA, Bacterial , Farmers , Food Microbiology , Humans , Phylogeny , Poultry/microbiology , Salmonella enterica/genetics , Salmonella enterica/isolation & purification , Serogroup , Virulence , beta-Lactamases/genetics , beta-Lactams/pharmacology
6.
Int J Mycobacteriol ; 8(3): 211-217, 2019.
Article in English | MEDLINE | ID: mdl-31512595

ABSTRACT

Background: This study explored the genetic diversity of Mycobacterium tuberculosis isolates in Egypt by spoligotyping in combination with pncA gene sequencing, spoNC. Methods: First, isolates were selected from 400 isolates positive for M. tuberculosis that referred to Central Labs Ministry of Health and then were subjected to the study analyses. Results: Twenty one isolates were found to be multidrug resistant (MDR) and 29 isolates were sensitive for isonizide (INH) and rifampicine (RIF) after testing by phenotypic drug susceptibility testing (DST) and Mycobacteria Growth Indicator Tube (MGIT). Spoligotyping yielded 45 patterns belonging to seven families that previously reported in neighboring countries such as Iraq, Syria, Iran, and Turkey. While four isolates were orphans. Conclusion: Application of spoNC on obtained spoligotype patterns enhances to reduce the clustering rate. Bejing family the predominant (34%) were subdivided by pncA sequence into three sensitive DST pncA wild type, three MDR-DST isolates showing cys14Arg mutation in pncA, two sensitive DST isolates with pncA Gly97Asp mutation, and three sensitive DST pncAVal128Gly mutation. The next most common CASI_DELHI family (16%) were subdivided by pncA sequencing into CASI_DELHI (st 381, MDR) including two pncA silent mutation ser65ser (tcc > tct) and CASI_DELHI (st26, sensitive) which included six pncA (wild-type) results, and Latin-American-Mediterranean 6 family (6%) all had PncA Gly97Asp mutation. We concluded that spoNC provides good snap shot for MDR surveillance and its country origin and performs early identification of outbreaks in Egypt.


Subject(s)
Amidohydrolases/genetics , Mutation , Mycobacterium tuberculosis/genetics , Tuberculosis, Multidrug-Resistant/microbiology , Adolescent , Adult , Aged , Antitubercular Agents/pharmacology , Bacterial Typing Techniques , Egypt , Epidemiological Monitoring , Female , Genetic Variation , Genotype , Humans , Male , Microbial Sensitivity Tests , Middle Aged , Mycobacterium tuberculosis/drug effects , Prospective Studies , Pyrazinamide/pharmacology , Rifampin/pharmacology , Sequence Analysis, DNA , Sputum/microbiology , Tuberculosis, Multidrug-Resistant/epidemiology , Young Adult
7.
Cancers (Basel) ; 11(6)2019 Jun 19.
Article in English | MEDLINE | ID: mdl-31248191

ABSTRACT

For localized tumors, gold nanorod (AuNR)-assisted plasmonic photothermal therapy (PPTT) is a potentially effective alternative to traditional surgery, in which AuNRs absorb near-infrared light and convert it to heat in order to kill cancer cells. However, for large tumors (volume ≥ 20 cm3), an uneven distribution of AuNRs might cause inhomogeneity of the heat distribution inside the tumor. Surgery is frequently recommended for removing large tumors, but it is associated with a high risk of cancer recurrence and metastasis. Here, we applied PPTT before surgery, which showed improved treatment for large tumors. We divided the animals (eight cats/dogs) into two groups: Group I (control), where three cases were solely treated with surgery, laser, or AuNRs alone, resulting in recurrence and metastasis; and Group II, where animals were treated with PPTT before surgery. In Group II, four out of the five cases had tumor regression without any recurrence or metastasis. Interestingly, we observed that applying PPTT before surgery displayed reduced bleeding during tumor removal, supported by histopathology that showed altered blood vessels. In conclusion, our study showed that applying AuNR-assisted PPTT (AuNRs-PPTT) before surgery could significantly affect blood vessels inside the tumor, leading to a decreased amount of bleeding during surgery, which can potentially decrease the risk of metastasis and blood loss during surgery.

8.
PLoS One ; 12(4): e0176347, 2017.
Article in English | MEDLINE | ID: mdl-28445543

ABSTRACT

Corynebacterium pseudotuberculosis is a Gram-positive, pleomorphic, facultative intracellular pathogen that causes Oedematous Skin Disease (OSD) in buffalo. To better understand the pathogenic mechanisms of OSD, we performed a comparative genomic analysis of 11 strains of C. pseudotuberculosis isolated from different buffalo found to be infected in Egypt during an outbreak that occurred in 2008. Sixteen previously described pathogenicity islands (PiCp) were present in all of the new buffalo strains, but one of them, PiCp12, had an insertion that contained both a corynephage and a diphtheria toxin gene, both of which may play a role in the adaptation of C. pseudotuberculosis to this new host. Synteny analysis showed variations in the site of insertion of the corynephage during the same outbreak. A gene functional comparison showed the presence of a nitrate reductase operon that included genes involved in molybdenum cofactor biosynthesis, which is necessary for a positive nitrate reductase phenotype and is a possible adaptation for intracellular survival. Genomes from the buffalo strains also had fusions in minor pilin genes in the spaA and spaD gene cluster (spaCX and spaYEF), which could suggest either an adaptation to this particular host, or mutation events in the immediate ancestor before this particular epidemic. A phylogenomic analysis confirmed a clear separation between the Ovis and Equi biovars, but also showed what appears to be a clustering by host species within the Equi strains.


Subject(s)
Comparative Genomic Hybridization , Corynebacterium Infections/microbiology , Corynebacterium pseudotuberculosis/genetics , Genome, Bacterial , Skin Diseases, Bacterial/microbiology , Animals , Bacterial Proteins/genetics , Buffaloes , Corynebacterium Infections/epidemiology , Corynebacterium Infections/pathology , Corynebacterium pseudotuberculosis/classification , Corynebacterium pseudotuberculosis/isolation & purification , Diphtheria Toxin/classification , Diphtheria Toxin/genetics , Disease Outbreaks , Egypt/epidemiology , Genomics , High-Throughput Nucleotide Sequencing , Multigene Family , Phylogeny , Sequence Analysis, DNA , Skin Diseases, Bacterial/epidemiology , Skin Diseases, Bacterial/pathology
9.
Int J Nanomedicine ; 11: 4849-4863, 2016.
Article in English | MEDLINE | ID: mdl-27703351

ABSTRACT

Plasmonic photothermal therapy (PPTT) is a cancer therapy in which gold nanorods are injected at the site of a tumor before near-infrared light is transiently applied to the tumor causing localized cell death. Previously, PPTT studies have been carried out on xenograft mice models. Herein, we report a study showing the feasibility of PPTT as applied to natural tumors in the mammary glands of dogs and cats, which more realistically represent their human equivalents at the molecular level. We optimized a regime of three low PPTT doses at 2-week intervals that ablated tumors mainly via apoptosis in 13 natural mammary gland tumors from seven animals. Histopathology, X-ray, blood profiles, and comprehensive examinations were used for both the diagnosis and the evaluation of tumor statuses before and after treatment. Histopathology results showed an obvious reduction in the cancer grade shortly after the first treatment and a complete regression after the third treatment. Blood tests showed no obvious change in liver and kidney functions. Similarly, X-ray diffraction showed no metastasis after 1 year of treatment. In conclusion, our study suggests the feasibility of applying the gold nanorods-PPTT on natural tumors in dogs and cats without any relapse or toxicity effects after 1 year of treatment.


Subject(s)
Apoptosis , Gold/therapeutic use , Hyperthermia, Induced/methods , Mammary Neoplasms, Animal/pathology , Mammary Neoplasms, Animal/therapy , Nanotubes/chemistry , Surface Plasmon Resonance/methods , Animals , Cats , Dogs , Female , Gold/chemistry , Humans , MCF-7 Cells , Mice , Neoplasm Recurrence, Local/prevention & control , Phototherapy/methods , Spectroscopy, Near-Infrared
10.
Bioconjug Chem ; 27(10): 2486-2492, 2016 Oct 19.
Article in English | MEDLINE | ID: mdl-27595304

ABSTRACT

TB remains a challenging disease to control worldwide. Nanoparticles have been used as drug carriers to deliver high concentrations of antibiotics directly to the site of infection, reducing the duration of treatment along with any side effects of off-target toxicities after systemic exposure to the antibiotics. Herein we have developed a drug delivery platform where gold nanorods (AuNRs) are conjugated to rifampicin (RF), which is released after uptake into macrophage cells (RAW264.7). Due to the nature of the macrophage cells, the nanoparticles are actively internalized into macrophages and release RF after uptake, under the safety frame of the host cells (macrophage). AuNRs without RF conjugation exhibit obvious antimicrobial activity. Therefore, AuNRs could be a promising antimycobacterial agent and an effective delivery vehicle for the antituberculosis drug Rifampicin for use in tuberculosis therapy.


Subject(s)
Antitubercular Agents/administration & dosage , Drug Delivery Systems/methods , Mycobacterium tuberculosis/drug effects , Nanotubes/chemistry , Rifampin/administration & dosage , Animals , Antitubercular Agents/pharmacokinetics , Cell Line , Drug Liberation , Gold/chemistry , Host-Pathogen Interactions/drug effects , Macrophages/drug effects , Macrophages/microbiology , Mice , Mycobacterium tuberculosis/pathogenicity , Tuberculosis/drug therapy , Tuberculosis/microbiology
11.
PLoS One ; 9(6): e98758, 2014.
Article in English | MEDLINE | ID: mdl-24901343

ABSTRACT

The aim of this study was to evaluate the Enterobacterial Repetitive Intergenic Consensus (ERIC-PCR) as a tool for molecular typing of C. pseudotuberculosis isolates from eight different hosts in twelve countries. Ninety-nine C. pseudotuberculosis field strains, one type strain (ATCC 19410T) and one vaccine strain (1002) were fingerprinted using the ERIC-1R and ERIC-2 primers, and the ERIC-1R+ERIC-2 primer pair. Twenty-nine different genotypes were generated by ERIC 1-PCR, 28 by ERIC 2-PCR and 35 by ERIC 1+2-PCR. The discriminatory index calculated for ERIC 1, ERIC 2, and ERIC 1+2-PCR was 0.89, 0.86, and 0.92, respectively. Epidemiological concordance was established for all ERIC-PCR assays. ERIC 1+2-PCR was defined as the best method based on suitability of the amplification patterns and discriminatory index. Minimal spanning tree for ERIC 1+2-PCR revealed three major clonal complexes and clustering around nitrate-positive (biovar Equi) and nitrate-negative (biovar Ovis) strains. Therefore, ERIC 1+2-PCR proved to be the best technique evaluated in this study for genotyping C. pseudotuberculosis strains, due to its usefulness for molecular epidemiology investigations.


Subject(s)
Corynebacterium pseudotuberculosis/classification , Corynebacterium pseudotuberculosis/genetics , DNA, Intergenic , Repetitive Sequences, Nucleic Acid , Animal Diseases/microbiology , Animals , Cluster Analysis , Corynebacterium Infections/veterinary , Corynebacterium pseudotuberculosis/isolation & purification , Genotype , Molecular Typing , Phylogeny , Polymerase Chain Reaction
12.
Mem Inst Oswaldo Cruz ; 108(3)2013 05.
Article in English | MEDLINE | ID: mdl-23778659

ABSTRACT

Corynebacterium diphtheriae, Corynebacterium ulcerans and Corynebacterium pseudotuberculosis constitute a group of potentially toxigenic microorganisms that are related to different infectious processes in animal and human hosts. Currently, there is a lack of information on the prevalence of disease caused by these pathogens, which is partially due to a reduction in the frequency of routine laboratory testing. In this study, a multiplex polymerase chain reaction (mPCR) assay that can simultaneously identify and determine the toxigenicity of these corynebacterial species with zoonotic potential was developed. This assay uses five primer pairs targeting the following genes: rpoB (Corynebacterium spp), 16S rRNA (C. ulcerans and C. pseudotuberculosis), pld (C. pseudotuberculosis), dtxR (C. diphtheriae) and tox [diphtheria toxin (DT) ]. In addition to describing this assay, we review the literature regarding the diseases caused by these pathogens. Of the 213 coryneform strains tested, the mPCR results for all toxigenic and non-toxigenic strains of C . diphtheriae, C. ulcerans and C. pseudotuberculosis were in 100% agreement with the results of standard biochemical tests and PCR-DT. As an alternative to conventional methods, due to its advantages of specificity and speed, the mPCR assay used in this study may successfully be applied for the diagnosis of human and/or animal diseases caused by potentially toxigenic corynebacterial species.


Subject(s)
Corynebacterium Infections/diagnosis , Corynebacterium Infections/microbiology , Corynebacterium/genetics , Diphtheria Toxin/genetics , Animals , Corynebacterium/classification , DNA, Bacterial/genetics , Humans , Multiplex Polymerase Chain Reaction , RNA, Ribosomal, 16S/genetics
13.
Mem. Inst. Oswaldo Cruz ; 108(3): 272-279, maio 2013. tab, graf
Article in English | LILACS | ID: lil-676970

ABSTRACT

Corynebacterium diphtheriae, Corynebacterium ulcerans and Corynebacterium pseudotuberculosis constitute a group of potentially toxigenic microorganisms that are related to different infectious processes in animal and human hosts. Currently, there is a lack of information on the prevalence of disease caused by these pathogens, which is partially due to a reduction in the frequency of routine laboratory testing. In this study, a multiplex polymerase chain reaction (mPCR) assay that can simultaneously identify and determine the toxigenicity of these corynebacterial species with zoonotic potential was developed. This assay uses five primer pairs targeting the following genes: rpoB (Corynebacterium spp), 16S rRNA (C. ulcerans and C. pseudotuberculosis), pld (C. pseudotuberculosis), dtxR (C. diphtheriae) and tox [diphtheria toxin (DT) ]. In addition to describing this assay, we review the literature regarding the diseases caused by these pathogens. Of the 213 coryneform strains tested, the mPCR results for all toxigenic and non-toxigenic strains of C . diphtheriae, C. ulcerans and C. pseudotuberculosis were in 100% agreement with the results of standard biochemical tests and PCR-DT. As an alternative to conventional methods, due to its advantages of specificity and speed, the mPCR assay used in this study may successfully be applied for the diagnosis of human and/or animal diseases caused by potentially toxigenic corynebacterial species.


Subject(s)
Animals , Humans , Corynebacterium Infections/diagnosis , Corynebacterium Infections/microbiology , Corynebacterium/genetics , Diphtheria Toxin/genetics , Corynebacterium/classification , DNA, Bacterial/genetics , Multiplex Polymerase Chain Reaction , /genetics
14.
J Bacteriol ; 194(23): 6663-4, 2012 Dec.
Article in English | MEDLINE | ID: mdl-23144408

ABSTRACT

Corynebacterium pseudotuberculosis is of major veterinary importance because it affects many animal species, causing economically significant livestock diseases and losses. Therefore, the genomic sequencing of various lines of this organism, isolated from different hosts, will aid in the development of diagnostic methods and new prevention and treatment strategies and improve our knowledge of the biology of this microorganism. In this study, we present the genome of C. pseudotuberculosis Cp31, isolated from a buffalo in Egypt.


Subject(s)
Corynebacterium pseudotuberculosis/genetics , DNA, Bacterial/chemistry , DNA, Bacterial/genetics , Genome, Bacterial , Sequence Analysis, DNA , Animals , Buffaloes/microbiology , Corynebacterium pseudotuberculosis/isolation & purification , Egypt , Molecular Sequence Data
SELECTION OF CITATIONS
SEARCH DETAIL
...