Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Molecules ; 28(19)2023 Oct 04.
Article in English | MEDLINE | ID: mdl-37836776

ABSTRACT

Highly porous membranes based on polyvinylidene fluoride (PVDF) with the addition of nanoscale particles of non-magnetic and magnetic iron oxides were synthesized using a combined method of non-solvent induced phase separation (NIPS) and thermo-induced phase separation (TIPS) based on the technique developed by Dr. Blade. The obtained membranes were characterized using SEM, EDS, XRD, IR, diffuse reflectance spectroscopy, and fluorescent microscopy. It was shown that the membranes possessed a high fraction of electroactive phase, which increased up to a maximum of 96% with the addition of 2 wt% of α-Fe2O3 and α/γ-Fe2O3 nanoparticles. It was demonstrated that doping PVDF with nanoparticles contributed to the reduction of pore size in the membrane. All membranes exhibited piezocatalytic activity in the degradation of Rhodamine B. The degree of degradation increased from 69% when using pure PVDF membrane to 90% when using the composite membrane. The nature of the additive did not affect the piezocatalytic activity. It was determined that the main reactive species responsible for the degradation of Rhodamine B were •OH and •O2-. It was also shown that under piezocatalytic conditions, composite membranes generated a piezopotential of approximately 2.5 V.

2.
Polymers (Basel) ; 15(1)2023 Jan 03.
Article in English | MEDLINE | ID: mdl-36616597

ABSTRACT

Creating stimulus-sensitive smart catalysts capable of decomposing organic dyes with high efficiency is a critical task in ecology. Combining the advantages of photoactive piezoelectric nanomaterials and ferroelectric polymers can effectively solve this problem by collecting mechanical vibrations and light energy. Using the electrospinning method, we synthesized hybrid polymer-inorganic nanocomposite fiber membranes based on polyvinylidene fluoride (PVDF) and bismuth ferrite (BFO). The samples were studied by scanning electron microscope (SEM), Fourier-transform infrared spectroscopy (FTIR), total transmittance and diffuse reflectance, X-ray photoelectron spectroscopy (XPS), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), vibrating-sample magnetometer (VSM), and piezopotential measurements. It has been demonstrated that the addition of BFO leads to an increase in the proportion of the polar phase from 86.5% to 96.1% due to the surface ion-dipole interaction. It is shown that the composite exhibits anisotropy of magnetic properties depending on the orientation of the magnetic field. The results of piezo-photocatalytic experiments showed that under the combined action of ultrasonic treatment and irradiation with both visible and UV light, the reaction rate increased in comparison with photolysis, sonolysis, and piezocatalysis. Moreover, for PVDF/BFO, which does not exhibit photocatalytic activity, under the combined action of light and ultrasound, the reaction rate increases by about 3× under UV irradiation and by about 6× under visible light irradiation. This behavior is explained by the piezoelectric potential and the narrowing of the band gap of the composite due to mechanical stress caused by the ultrasound.

SELECTION OF CITATIONS
SEARCH DETAIL
...