Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
Add more filters










Publication year range
1.
Sci Rep ; 9(1): 11609, 2019 08 12.
Article in English | MEDLINE | ID: mdl-31406130

ABSTRACT

Humans interact with the oceans in diverse and profound ways. The scope, magnitude, footprint and ultimate cumulative impacts of human activities can threaten ocean ecosystems and have changed over time, resulting in new challenges and threats to marine ecosystems. A fundamental gap in understanding how humanity is affecting the oceans is our limited knowledge about the pace of change in cumulative impact on ocean ecosystems from expanding human activities - and the patterns, locations and drivers of most significant change. To help address this, we combined high resolution, annual data on the intensity of 14 human stressors and their impact on 21 marine ecosystems over 11 years (2003-2013) to assess pace of change in cumulative impacts on global oceans, where and how much that pace differs across the ocean, and which stressors and their impacts contribute most to those changes. We found that most of the ocean (59%) is experiencing significantly increasing cumulative impact, in particular due to climate change but also from fishing, land-based pollution and shipping. Nearly all countries saw increases in cumulative impacts in their coastal waters, as did all ecosystems, with coral reefs, seagrasses and mangroves at most risk. Mitigation of stressors most contributing to increases in overall cumulative impacts is urgently needed to sustain healthy oceans.


Subject(s)
Human Activities , Oceans and Seas , Water Pollution , Conservation of Natural Resources/methods , Humans
2.
Proc Biol Sci ; 286(1896): 20182544, 2019 02 13.
Article in English | MEDLINE | ID: mdl-30963937

ABSTRACT

Coral reefs worldwide face unprecedented cumulative anthropogenic effects of interacting local human pressures, global climate change and distal social processes. Reefs are also bound by the natural biophysical environment within which they exist. In this context, a key challenge for effective management is understanding how anthropogenic and biophysical conditions interact to drive distinct coral reef configurations. Here, we use machine learning to conduct explanatory predictions on reef ecosystems defined by both fish and benthic communities. Drawing on the most spatially extensive dataset available across the Hawaiian archipelago-20 anthropogenic and biophysical predictors over 620 survey sites-we model the occurrence of four distinct reef regimes and provide a novel approach to quantify the relative influence of human and environmental variables in shaping reef ecosystems. Our findings highlight the nuances of what underpins different coral reef regimes, the overwhelming importance of biophysical predictors and how a reef's natural setting may either expand or narrow the opportunity space for management interventions. The methods developed through this study can help inform reef practitioners and hold promises for replication across a broad range of ecosystems.


Subject(s)
Biodiversity , Climate Change , Conservation of Natural Resources/methods , Coral Reefs , Machine Learning , Biophysics , Hawaii , Models, Biological
3.
Evol Appl ; 12(2): 255-265, 2019 Feb.
Article in English | MEDLINE | ID: mdl-30697337

ABSTRACT

Assessing the geographic structure of populations has relied heavily on Sewell Wright's F-statistics and their numerous analogues for many decades. However, it is well appreciated that, due to their nonlinear relationship with gene flow, F-statistics frequently fail to reject the null model of panmixia in species with relatively high levels of gene flow and large population sizes. Coalescent genealogy samplers instead allow a model-selection approach to the characterization of population structure, thereby providing the opportunity for stronger inference. Here, we validate the use of coalescent samplers in a high gene flow context using simulations of a stepping-stone model. In an example case study, we then re-analyze genetic datasets from 41 marine species sampled from throughout the Hawaiian archipelago using coalescent model selection. Due to the archipelago's linear nature, it is expected that most species will conform to some sort of stepping-stone model (leading to an expected pattern of isolation by distance), but F-statistics have only supported this inference in ~10% of these datasets. Our simulation analysis shows that a coalescent sampler can make a correct inference of stepping-stone gene flow in nearly 100% of cases where gene flow is ≤100 migrants per generation (equivalent to F ST = 0.002), while F-statistics had mixed results. Our re-analysis of empirical datasets found that nearly 70% of datasets with an unambiguous result fit a stepping-stone model with varying population sizes and rates of gene flow, although 37% of datasets yielded ambiguous results. Together, our results demonstrate that coalescent samplers hold great promise for detecting weak but meaningful population structure, and defining appropriate management units.

4.
Sci Rep ; 8(1): 16943, 2018 11 16.
Article in English | MEDLINE | ID: mdl-30446687

ABSTRACT

Coral reefs worldwide face an uncertain future with many reefs reported to transition from being dominated by corals to macroalgae. However, given the complexity and diversity of the ecosystem, research on how regimes vary spatially and temporally is needed. Reef regimes are most often characterised by their benthic components; however, complex dynamics are associated with losses and gains in both fish and benthic assemblages. To capture this complexity, we synthesised 3,345 surveys from Hawai'i to define reef regimes in terms of both fish and benthic assemblages. Model-based clustering revealed five distinct regimes that varied ecologically, and were spatially heterogeneous by island, depth and exposure. We identified a regime characteristic of a degraded state with low coral cover and fish biomass, one that had low coral but high fish biomass, as well as three other regimes that varied significantly in their ecology but were previously considered a single coral dominated regime. Analyses of time series data reflected complex system dynamics, with multiple transitions among regimes that were a function of both local and global stressors. Coupling fish and benthic communities into reef regimes to capture complex dynamics holds promise for monitoring reef change and guiding ecosystem-based management of coral reefs.


Subject(s)
Biodiversity , Coral Reefs , Ecosystem , Fishes , Animals , Geography , Hawaii , Islands
5.
Evol Appl ; 11(7): 1176-1193, 2018 Aug.
Article in English | MEDLINE | ID: mdl-30026805

ABSTRACT

Biological diversity is a key concept in the life sciences and plays a fundamental role in many ecological and evolutionary processes. Although biodiversity is inherently a hierarchical concept covering different levels of organization (genes, population, species, ecological communities and ecosystems), a diversity index that behaves consistently across these different levels has so far been lacking, hindering the development of truly integrative biodiversity studies. To fill this important knowledge gap, we present a unifying framework for the measurement of biodiversity across hierarchical levels of organization. Our weighted, information-based decomposition framework is based on a Hill number of order q = 1, which weights all elements in proportion to their frequency and leads to diversity measures based on Shannon's entropy. We investigated the numerical behaviour of our approach with simulations and showed that it can accurately describe complex spatial hierarchical structures. To demonstrate the intuitive and straightforward interpretation of our diversity measures in terms of effective number of components (alleles, species, etc.), we applied the framework to a real data set on coral reef biodiversity. We expect our framework will have multiple applications covering the fields of conservation biology, community genetics and eco-evolutionary dynamics.

6.
PLoS One ; 13(3): e0189792, 2018.
Article in English | MEDLINE | ID: mdl-29494613

ABSTRACT

A major challenge for coral reef conservation and management is understanding how a wide range of interacting human and natural drivers cumulatively impact and shape these ecosystems. Despite the importance of understanding these interactions, a methodological framework to synthesize spatially explicit data of such drivers is lacking. To fill this gap, we established a transferable data synthesis methodology to integrate spatial data on environmental and anthropogenic drivers of coral reefs, and applied this methodology to a case study location-the Main Hawaiian Islands (MHI). Environmental drivers were derived from time series (2002-2013) of climatological ranges and anomalies of remotely sensed sea surface temperature, chlorophyll-a, irradiance, and wave power. Anthropogenic drivers were characterized using empirically derived and modeled datasets of spatial fisheries catch, sedimentation, nutrient input, new development, habitat modification, and invasive species. Within our case study system, resulting driver maps showed high spatial heterogeneity across the MHI, with anthropogenic drivers generally greatest and most widespread on O'ahu, where 70% of the state's population resides, while sedimentation and nutrients were dominant in less populated islands. Together, the spatial integration of environmental and anthropogenic driver data described here provides a first-ever synthetic approach to visualize how the drivers of coral reef state vary in space and demonstrates a methodological framework for implementation of this approach in other regions of the world. By quantifying and synthesizing spatial drivers of change on coral reefs, we provide an avenue for further research to understand how drivers determine reef diversity and resilience, which can ultimately inform policies to protect coral reefs.


Subject(s)
Coral Reefs , Geographic Mapping , Aquaculture , Conservation of Natural Resources/methods , Ecosystem , Hawaii , Humans , Introduced Species , Population Density
7.
J Environ Manage ; 191: 8-18, 2017 Apr 15.
Article in English | MEDLINE | ID: mdl-28082251

ABSTRACT

Land-based source pollutants (LBSP) actively threaten coral reef ecosystems globally. To achieve the greatest conservation outcome at the lowest cost, managers could benefit from appropriate tools that evaluate the benefits (in terms of LBSP reduction) and costs of implementing alternative land management strategies. Here we use a spatially explicit predictive model (InVEST-SDR) that quantifies change in sediment reaching the coast for evaluating the costs and benefits of alternative threat-abatement scenarios. We specifically use the model to examine trade-offs among possible agricultural road repair management actions (water bars to divert runoff and gravel to protect the road surface) across the landscape in West Maui, Hawaii, USA. We investigated changes in sediment delivery to coasts and costs incurred from management decision-making that is (1) cooperative or independent among landowners, and focused on (2) minimizing costs, reducing sediment, or both. The results illuminate which management scenarios most effectively minimize sediment while also minimizing the cost of mitigation efforts. We find targeting specific "hotspots" within all individual parcels is more cost-effective than targeting all road segments. The best outcomes are achieved when landowners cooperate and target cost-effective road repairs, however, a cooperative strategy can be counter-productive in some instances when cost-effectiveness is ignored. Simple models, such as the one developed here, have the potential to help managers make better choices about how to use limited resources.


Subject(s)
Conservation of Natural Resources , Coral Reefs , Ecosystem , Geologic Sediments , Models, Theoretical
8.
Conserv Biol ; 31(4): 872-882, 2017 08.
Article in English | MEDLINE | ID: mdl-27925351

ABSTRACT

Growing threats to biodiversity and global alteration of habitats and species distributions make it increasingly necessary to consider evolutionary patterns in conservation decision making. Yet, there is no clear-cut guidance on how genetic features can be incorporated into conservation-planning processes, despite multiple molecular markers and several genetic metrics for each marker type to choose from. Genetic patterns differ between species, but the potential tradeoffs among genetic objectives for multiple species in conservation planning are currently understudied. We compared spatial conservation prioritizations derived from 2 metrics of genetic diversity (nucleotide and haplotype diversity) and 2 metrics of genetic isolation (private haplotypes and local genetic differentiation) in mitochondrial DNA of 5 marine species. We compared outcomes of conservation plans based only on habitat representation with plans based on genetic data and habitat representation. Fewer priority areas were selected for conservation plans based solely on habitat representation than on plans that included habitat and genetic data. All 4 genetic metrics selected approximately similar conservation-priority areas, which is likely a result of prioritizing genetic patterns across a genetically diverse array of species. Largely, our results suggest that multispecies genetic conservation objectives are vital to creating protected-area networks that appropriately preserve community-level evolutionary patterns.


Subject(s)
Biodiversity , Conservation of Natural Resources , Reproductive Isolation , Biological Evolution , Ecosystem
9.
Ecol Appl ; 26(3): 651-63, 2016 Apr.
Article in English | MEDLINE | ID: mdl-27411240

ABSTRACT

Scientists and resource managers often use methods and tools that assume ecosystem components respond linearly to environmental drivers and human stressors. However, a growing body of literature demonstrates that many relationships are-non-linear, where small changes in a driver prompt a disproportionately large ecological response. We aim to provide a comprehensive assessment of the relationships between drivers and ecosystem components to identify where and when non-linearities are likely to occur. We focused our analyses on one of the best-studied marine systems, pelagic ecosystems, which allowed us to apply robust statistical techniques on a large pool of previously published studies. In this synthesis, we (1) conduct a wide literature review on single driver-response relationships in pelagic systems, (2) use statistical models to identify the degree of non-linearity in these relationships, and (3) assess whether general patterns exist in the strengths and shapes of non-linear relationships across drivers. Overall we found that non-linearities are common in pelagic ecosystems, comprising at least 52% of all driver-response relation- ships. This is likely an underestimate, as papers with higher quality data and analytical approaches reported non-linear relationships at a higher frequency (on average 11% more). Consequently, in the absence of evidence for a linear relationship, it is safer to assume a relationship is non-linear. Strong non-linearities can lead to greater ecological and socioeconomic consequences if they are unknown (and/or unanticipated), but if known they may provide clear thresholds to inform management targets. In pelagic systems, strongly non-linear relationships are often driven by climate and trophodynamic variables but are also associated with local stressors, such as overfishing and pollution, that can be more easily controlled by managers. Even when marine resource managers cannot influence ecosystem change, they can use information about threshold responses to guide how other stressors are managed and to adapt to new ocean conditions. As methods to detect and reduce uncertainty around threshold values improve, managers will be able to better understand and account for ubiquitous non-linear relationships.


Subject(s)
Ecosystem , Marine Biology/methods , Models, Biological , Oceans and Seas , Animals , Biomass , Databases, Factual , Population Density
10.
Proc Biol Sci ; 283(1829)2016 04 27.
Article in English | MEDLINE | ID: mdl-27122569

ABSTRACT

Conservation of ecological communities requires deepening our understanding of genetic diversity patterns and drivers at community-wide scales. Here, we use seascape genetic analysis of a diversity metric, allelic richness (AR), for 47 reef species sampled across 13 Hawaiian Islands to empirically demonstrate that large reefs high in coral cover harbour the greatest genetic diversity on average. We found that a species's life history (e.g. depth range and herbivory) mediates response of genetic diversity to seascape drivers in logical ways. Furthermore, a metric of combined multi-species AR showed strong coupling to species richness and habitat area, quality and stability that few species showed individually. We hypothesize that macro-ecological forces and species interactions, by mediating species turnover and occupancy (and thus a site's mean effective population size), influence the aggregate genetic diversity of a site, potentially allowing it to behave as an apparent emergent trait that is shaped by the dominant seascape drivers. The results highlight inherent feedbacks between ecology and genetics, raise concern that genetic resilience of entire reef communities is compromised by factors that reduce coral cover or available habitat, including thermal stress, and provide a foundation for new strategies for monitoring and preserving biodiversity of entire reef ecosystems.


Subject(s)
Anthozoa/genetics , Coral Reefs , DNA/genetics , Animals , Biodiversity , Fishes , Genetic Variation , Hawaii , Models, Genetic
11.
Nat Commun ; 6: 7615, 2015 Jul 14.
Article in English | MEDLINE | ID: mdl-26172980

ABSTRACT

Human pressures on the ocean are thought to be increasing globally, yet we know little about their patterns of cumulative change, which pressures are most responsible for change, and which places are experiencing the greatest increases. Managers and policymakers require such information to make strategic decisions and monitor progress towards management objectives. Here we calculate and map recent change over 5 years in cumulative impacts to marine ecosystems globally from fishing, climate change, and ocean- and land-based stressors. Nearly 66% of the ocean and 77% of national jurisdictions show increased human impact, driven mostly by climate change pressures. Five percent of the ocean is heavily impacted with increasing pressures, requiring management attention. Ten percent has very low impact with decreasing pressures. Our results provide large-scale guidance about where to prioritize management efforts and affirm the importance of addressing climate change to maintain and improve the condition of marine ecosystems.


Subject(s)
Climate Change , Ecosystem , Oceans and Seas , Water Pollution , Environmental Monitoring , Environmental Pollution , Fisheries , Humans , Spatio-Temporal Analysis
12.
Mol Ecol ; 23(12): 3064-79, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24866831

ABSTRACT

What shapes variation in genetic structure within a community of codistributed species is a central but difficult question for the field of population genetics. With a focus on the isolated coral reef ecosystem of the Hawaiian Archipelago, we assessed how life history traits influence population genetic structure for 35 reef animals. Despite the archipelago's stepping stone configuration, isolation by distance was the least common type of genetic structure, detected in four species. Regional structuring (i.e. division of sites into genetically and spatially distinct regions) was most common, detected in 20 species and nearly in all endemics and habitat specialists. Seven species displayed chaotic (spatially unordered) structuring, and all were nonendemic generalist species. Chaotic structure also associated with relatively high global FST. Pelagic larval duration (PLD) was not a strong predictor of variation in population structure (R2=0.22), but accounting for higher FST values of chaotic and invertebrate species, compared to regionally structured and fish species, doubled the power of PLD to explain variation in global FST (adjusted R2=0.50). Multivariate correlation of eight species traits to six genetic traits highlighted dispersal ability, taxonomy (i.e. fish vs. invertebrate) and habitat specialization as strongest influences on genetics, but otherwise left much variation in genetic traits unexplained. Considering that the study design controlled for many sampling and geographical factors, the extreme interspecific variation in spatial genetic patterns observed for Hawaìi marine species may be generated by demographic variability due to species-specific abundance and migration patterns and/or seascape and historical factors.


Subject(s)
Biota/genetics , Coral Reefs , Genetics, Population , Animals , DNA, Mitochondrial/genetics , Ecosystem , Fishes/genetics , Hawaii , Invertebrates/genetics , Islands , Linear Models , Microsatellite Repeats , Models, Genetic
13.
Mol Ecol ; 22(13): 3476-94, 2013 Jul.
Article in English | MEDLINE | ID: mdl-23802550

ABSTRACT

We combine kinship estimates with traditional F-statistics to explain contemporary drivers of population genetic differentiation despite high gene flow. We investigate range-wide population genetic structure of the California spiny (or red rock) lobster (Panulirus interruptus) and find slight, but significant global population differentiation in mtDNA (ΦST = 0.006, P = 0.001; D(est_Chao) = 0.025) and seven nuclear microsatellites (F(ST) = 0.004, P < 0.001; D(est_Chao) = 0.03), despite the species' 240- to 330-day pelagic larval duration. Significant population structure does not correlate with distance between sampling locations, and pairwise FST between adjacent sites often exceeds that among geographically distant locations. This result would typically be interpreted as unexplainable, chaotic genetic patchiness. However, kinship levels differ significantly among sites (pseudo-F(16,988) = 1.39, P = 0.001), and ten of 17 sample sites have significantly greater numbers of kin than expected by chance (P < 0.05). Moreover, a higher proportion of kin within sites strongly correlates with greater genetic differentiation among sites (D(est_Chao), R(2) = 0.66, P < 0.005). Sites with elevated mean kinship were geographically proximate to regions of high upwelling intensity (R(2) = 0.41, P = 0.0009). These results indicate that P. interruptus does not maintain a single homogenous population, despite extreme dispersal potential. Instead, these lobsters appear to either have substantial localized recruitment or maintain planktonic larval cohesiveness whereby siblings more likely settle together than disperse across sites. More broadly, our results contribute to a growing number of studies showing that low F(ST) and high family structure across populations can coexist, illuminating the foundations of cryptic genetic patterns and the nature of marine dispersal.


Subject(s)
DNA, Mitochondrial/genetics , Gene Flow , Genetics, Population , Palinuridae/genetics , Animals , California , Genetic Drift , Microsatellite Repeats , Molecular Sequence Data , Palinuridae/classification , Phylogeography , Sequence Analysis, DNA
14.
PLoS One ; 7(2): e32742, 2012.
Article in English | MEDLINE | ID: mdl-22393445

ABSTRACT

Historical exploitation of the Mediterranean Sea and the absence of rigorous baselines makes it difficult to evaluate the current health of the marine ecosystems and the efficacy of conservation actions at the ecosystem level. Here we establish the first current baseline and gradient of ecosystem structure of nearshore rocky reefs at the Mediterranean scale. We conducted underwater surveys in 14 marine protected areas and 18 open access sites across the Mediterranean, and across a 31-fold range of fish biomass (from 3.8 to 118 g m(-2)). Our data showed remarkable variation in the structure of rocky reef ecosystems. Multivariate analysis showed three alternative community states: (1) large fish biomass and reefs dominated by non-canopy algae, (2) lower fish biomass but abundant native algal canopies and suspension feeders, and (3) low fish biomass and extensive barrens, with areas covered by turf algae. Our results suggest that the healthiest shallow rocky reef ecosystems in the Mediterranean have both large fish and algal biomass. Protection level and primary production were the only variables significantly correlated to community biomass structure. Fish biomass was significantly larger in well-enforced no-take marine reserves, but there were no significant differences between multi-use marine protected areas (which allow some fishing) and open access areas at the regional scale. The gradients reported here represent a trajectory of degradation that can be used to assess the health of any similar habitat in the Mediterranean, and to evaluate the efficacy of marine protected areas.


Subject(s)
Biomass , Ecosystem , Fishes/physiology , Algorithms , Animals , Conservation of Natural Resources , Coral Reefs , Environment , Geography , Humans , Invertebrates/physiology , Mediterranean Sea , Population Dynamics
15.
Mol Ecol ; 19(17): 3708-26, 2010 Sep.
Article in English | MEDLINE | ID: mdl-20723063

ABSTRACT

Marine species frequently show weak and/or complex genetic structuring that is commonly dismissed as 'chaotic' genetic patchiness and ecologically uninformative. Here, using three datasets that individually feature weak chaotic patchiness, we demonstrate that combining inferences across species and incorporating environmental data can greatly improve the predictive value of marine population genetics studies on small spatial scales. Significant correlations in genetic patterns of microsatellite markers among three species, kelp bass Paralabrax clathratus, Kellet's whelk Kelletia kelletii and California spiny lobster Panulirus interruptus, in the Southern California Bight suggest that slight differences in diversity and pairwise differentiation across sampling sites are not simply noise or chaotic patchiness, but are ecologically meaningful. To test whether interspecies correlations potentially result from shared environmental drivers of genetic patterns, we assembled data on kelp bed size, sea surface temperature and estimates of site-to-site migration probability derived from a high resolution multi-year ocean circulation model. These data served as predictor variables in linear models of genetic diversity and linear mixed models of genetic differentiation that were assessed with information-theoretic model selection. Kelp was the most informative predictor of genetics for all three species, but ocean circulation also played a minor role for kelp bass. The shared patterns suggest a single spatial marine management strategy may effectively protect genetic diversity of multiple species. This study demonstrates the power of environmental and ecological data to shed light on weak genetic patterns and highlights the need for future focus on a mechanistic understanding of the links between oceanography, ecology and genetic structure.


Subject(s)
Coral Reefs , Genetic Variation , Genetics, Population , Animals , Bass/genetics , California , Ecology/methods , Gastropoda/genetics , Genotype , Linear Models , Microsatellite Repeats , Models, Genetic , Nonlinear Dynamics , Oceanography/methods , Palinuridae/genetics , Water Movements
16.
Ecol Appl ; 20(5): 1402-16, 2010 Jul.
Article in English | MEDLINE | ID: mdl-20666257

ABSTRACT

As resource management and conservation efforts move toward multi-sector, ecosystem-based approaches, we need methods for comparing the varying responses of ecosystems to the impacts of human activities in order to prioritize management efforts, allocate limited resources, and understand cumulative effects. Given the number and variety of human activities affecting ecosystems, relatively few empirical studies are adequately comprehensive to inform these decisions. Consequently, management often turns to expert judgment for information. Drawing on methods from decision science, we offer a method for eliciting expert judgment to (1) quantitatively estimate the relative vulnerability of ecosystems to stressors, (2) help prioritize the management of stressors across multiple ecosystems, (3) evaluate how experts give weight to different criteria to characterize vulnerability of ecosystems to anthropogenic stressors, and (4) identify key knowledge gaps. We applied this method to the California Current region in order to evaluate the relative vulnerability of 19 marine ecosystems to 53 stressors associated with human activities, based on surveys from 107 experts. When judging the relative vulnerability of ecosystems to stressors, we found that experts primarily considered two criteria: the ecosystem's resistance to the stressor and the number of species or trophic levels affected. Four intertidal ecosystems (mudflat, beach, salt marsh, and rocky intertidal) were judged most vulnerable to the suite of human activities evaluated here. The highest vulnerability rankings for coastal ecosystems were invasive species, ocean acidification, sea temperature change, sea level rise, and habitat alteration from coastal engineering, while offshore ecosystems were assessed to be most vulnerable to ocean acidification, demersal destructive fishing, and shipwrecks. These results provide a quantitative, transparent, and repeatable assessment of relative vulnerability across ecosystems to any ongoing or emerging human activity. Combining these results with data on the spatial distribution and intensity of human activities provides a systematic foundation for ecosystem-based management.


Subject(s)
Ecosystem , Seawater , California
17.
Proc Biol Sci ; 277(1688): 1685-94, 2010 Jun 07.
Article in English | MEDLINE | ID: mdl-20133354

ABSTRACT

Management and conservation can be greatly informed by considering explicitly how environmental factors influence population genetic structure. Using simulated larval dispersal estimates based on ocean current observations, we demonstrate how explicit consideration of frequency of exchange of larvae among sites via ocean advection can fundamentally change the interpretation of empirical population genetic structuring as compared with conventional spatial genetic analyses. Both frequency of larval exchange and empirical genetic difference were uncorrelated with Euclidean distance between sites. When transformed into relative oceanographic distances and integrated into a genetic isolation-by-distance framework, however, the frequency of larval exchange explained nearly 50 per cent of the variance in empirical genetic differences among sites over scales of tens of kilometres. Explanatory power was strongest when we considered effects of multiple generations of larval dispersal via intermediary locations on the long-term probability of exchange between sites. Our results uncover meaningful spatial patterning to population genetic structuring that corresponds with ocean circulation. This study advances our ability to interpret population structure from complex genetic data characteristic of high gene flow species, validates recent advances in oceanographic approaches for assessing larval dispersal and represents a novel approach to characterize population connectivity at small spatial scales germane to conservation and fisheries management.


Subject(s)
Genetics, Population , Marine Biology , Snails , Water Movements , Animals , Ecosystem , Larva/growth & development , Oceanography , Oceans and Seas , Population Dynamics , Snails/genetics , Snails/growth & development
19.
Mol Ecol Resour ; 9(1): 429-30, 2009 Jan.
Article in English | MEDLINE | ID: mdl-21564670

ABSTRACT

Eleven microsatellites were characterized for Semicossyphus pulcher (California sheephead) using an enrichment protocol. The number of alleles varied from three to 14 for a sample of 40 individuals from two populations. Expected heterozygosities ranged from 0.311 to 0.891. All loci but one were in Hardy-Weinberg equilibrium. No evidence for linkage disequilibrium was observed. These polymorphic microsatellites will be useful for genetic diversity and connectivity analyses of S. pulcher.

20.
Science ; 319(5865): 948-52, 2008 Feb 15.
Article in English | MEDLINE | ID: mdl-18276889

ABSTRACT

The management and conservation of the world's oceans require synthesis of spatial data on the distribution and intensity of human activities and the overlap of their impacts on marine ecosystems. We developed an ecosystem-specific, multiscale spatial model to synthesize 17 global data sets of anthropogenic drivers of ecological change for 20 marine ecosystems. Our analysis indicates that no area is unaffected by human influence and that a large fraction (41%) is strongly affected by multiple drivers. However, large areas of relatively little human impact remain, particularly near the poles. The analytical process and resulting maps provide flexible tools for regional and global efforts to allocate conservation resources; to implement ecosystem-based management; and to inform marine spatial planning, education, and basic research.


Subject(s)
Ecosystem , Human Activities , Animals , Climate , Conservation of Natural Resources , Fisheries , Humans , Mathematics , Models, Theoretical , Oceans and Seas
SELECTION OF CITATIONS
SEARCH DETAIL
...