Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Total Environ ; 830: 154748, 2022 Jul 15.
Article in English | MEDLINE | ID: mdl-35337877

ABSTRACT

The human population is increasingly reliant on the marine environment for food, trade, tourism, transport, communication and other vital ecosystem services. These services require extensive marine infrastructure, all of which have direct or indirect ecological impacts on marine environments. The rise in global marine infrastructure has led to light, noise and chemical pollution, as well as facilitation of biological invasions. As a result, marine systems and associated species are under increased pressure from habitat loss and degradation, formation of ecological traps and increased mortality, all of which can lead to reduced resilience and consequently increased invasive species establishment. Whereas the cumulative bearings of collective human impacts on marine populations have previously been demonstrated, the multiple impacts associated with marine infrastructure have not been well explored. Here, building on ecological literature, we explore the impacts that are associated with marine infrastructure, conceptualising the notion of correlative, interactive and cumulative effects of anthropogenic activities on the marine environment. By reviewing the range of mitigation approaches that are currently available, we consider the role that eco-engineering, marine spatial planning and agent-based modelling plays in complementing the design and placement of marine structures to incorporate the existing connectivity pathways, ecological principles and complexity of the environment. Because the effect of human-induced, rapid environmental change is predicted to increase in response to the growth of the human population, this study demonstrates that the development and implementation of legislative framework, innovative technologies and nature-informed solutions are vital, preventative measures to mitigate the multiple impacts associated with marine infrastructure.


Subject(s)
Conservation of Natural Resources , Ecosystem , Concept Formation , Environmental Pollution , Humans , Introduced Species
2.
Integr Environ Assess Manag ; 18(1): 148-162, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34546640

ABSTRACT

Over the past decade, the scientific community has studied, experimented, and published a notable body of literature on the ecological enhancement of coastal and marine infrastructure (CMI). The Nature-Inclusive Design (NID) approach refers to methods and technologies that can be integrated into the design and construction of CMI to create a suitable habitat for native species (or communities) whose natural habitat has been degraded or reduced. To examine the compliance of new environmentally sensitive technologies with structural requirements and fiscal restraints, while providing ecosystem and habitat value, this paper presents the findings of a structural-economical-biological analysis of ecologically engineered Articulated Concrete Block Mattresses (ACBMs). To evaluate the structural and biological performance of the Ecological Articulated Concrete Block Mattresses, a pilot project was deployed in April 2017 at Port Everglades, Florida, USA, and evaluated against controls of adjacent artificial structures and smooth-surface concrete blocks and monitored over a period of two years. The elements of ecological enhancement implemented in the fabrication and design of the ecologically enhanced ACBMs were comprised of bio-enhancing concrete additives and science-based designs. Based on the results of this study, these design alterations have increased the richness and diversity of sessile assemblages compared to control blocks and adjacent artificial structures and supported a higher abundance of mobile species. This ecological improvement was achieved within the operational limitations of conventional manufacturing and installation technologies, while complying with strict structural requirements for standard concrete marine construction. The results supported the working hypothesis and demonstrated that modifications of concrete composition, surface texture, and macro-design have the potential to increase the ecological value of concrete-based CMI and promote a more sustainable and adaptive approach to coastal and marine development in an era of climate resilience-building. Integr Environ Assess Manag 2022;18:148-162. © 2021 SETAC.


Subject(s)
Beds , Ecosystem , Florida , Pilot Projects
3.
J Exp Biol ; 220(Pt 18): 3327-3335, 2017 09 15.
Article in English | MEDLINE | ID: mdl-28705830

ABSTRACT

We report here the biochemical, molecular and ultrastructural features of a unique organization of fibrillar collagen extracted from the octocoral Sarcophyton ehrenbergi Collagen, the most abundant protein in the animal kingdom, is often defined as a structural component of extracellular matrices in metazoans. In the present study, collagen fibers were extracted from the mesenteries of S. ehrenbergi polyps. These fibers are organized as filaments and further compacted as coiled fibers. The fibers are uniquely long, reaching an unprecedented length of tens of centimeters. The diameter of these fibers is 9±0.37 µm. The amino acid content of these fibers was identified using chromatography and revealed close similarity in content to mammalian type I and II collagens. The ultrastructural organization of the fibers was characterized by means of high-resolution microscopy and X-ray diffraction. The fibers are composed of fibrils and fibril bundles in the range of 15 to 35 nm. These data indicate a fibrillar collagen possessing structural aspects of both types I and II collagen, a highly interesting and newly described form of fibrillar collagen organization.


Subject(s)
Anthozoa/chemistry , Fibrillar Collagens/chemistry , Animals , Anthozoa/ultrastructure , Fibrillar Collagens/ultrastructure , Microscopy, Electron, Transmission , X-Ray Diffraction
SELECTION OF CITATIONS
SEARCH DETAIL
...