Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Sensors (Basel) ; 22(9)2022 Apr 29.
Article in English | MEDLINE | ID: mdl-35591099

ABSTRACT

High-flux X-ray measurements with high-energy resolution and high throughput require the mitigation of pile-up and dead time effects. The reduction of the time width of the shaped pulses is a key approach, taking into account the distortions from the ballistic deficit, non-linearity, and time instabilities. In this work, we will present the performance of cadmium−zinc−telluride (CdZnTe or CZT) pixel detectors equipped with digital shapers faster than the preamplifier peaking times (ballistic deficit pulse processing). The effects on energy resolution, throughput, energy-linearity, time stability, charge sharing, and pile-up are shown. The results highlight the absence of time instabilities and high-energy resolution (<4% FWHM at 122 keV) when ballistic deficit pulse processing (dead time of 90 ns) was used in CZT pixel detectors. These activities are in the framework of an international collaboration on the development of spectroscopic imagers for medical applications (mammography, computed tomography) and non-destructive testing in the food industry.


Subject(s)
Cadmium , Tellurium , Tellurium/chemistry , X-Rays , Zinc/chemistry
2.
Sensors (Basel) ; 22(4)2022 Feb 13.
Article in English | MEDLINE | ID: mdl-35214342

ABSTRACT

The success of cadmium zinc telluride (CZT) detectors in room-temperature spectroscopic X-ray imaging is now widely accepted. The most common CZT detectors are characterized by enhanced-charge transport properties of electrons, with mobility-lifetime products µeτe > 10-2 cm2/V and µhτh > 10-5 cm2/V. These materials, typically termed low-flux LF-CZT, are successfully used for thick electron-sensing detectors and in low-flux conditions. Recently, new CZT materials with hole mobility-lifetime product enhancements (µhτh > 10-4 cm2/V and µeτe > 10-3 cm2/V) have been fabricated for high-flux measurements (high-flux HF-CZT detectors). In this work, we will present the performance and charge-sharing properties of sub-millimeter CZT pixel detectors based on LF-CZT and HF-CZT crystals. Experimental results from the measurement of energy spectra after charge-sharing addition (CSA) and from 2D X-ray mapping highlight the better charge-collection properties of HF-CZT detectors near the inter-pixel gaps. The successful mitigation of the effects of incomplete charge collection after CSA was also performed through original charge-sharing correction techniques. These activities exist in the framework of international collaboration on the development of energy-resolved X-ray scanners for medical applications and non-destructive testing in the food industry.


Subject(s)
Cadmium Compounds , Cadmium , Cadmium Compounds/chemistry , Photons , Tellurium/chemistry , X-Rays , Zinc/chemistry
3.
Sensors (Basel) ; 21(11)2021 May 25.
Article in English | MEDLINE | ID: mdl-34070426

ABSTRACT

Multiple coincidence events from charge-sharing and fluorescent cross-talk are typical drawbacks in room-temperature semiconductor pixel detectors. The mitigation of these distortions in the measured energy spectra, using charge-sharing discrimination (CSD) and charge-sharing addition (CSA) techniques, is always a trade-off between counting efficiency and energy resolution. The energy recovery of multiple coincidence events is still challenging due to the presence of charge losses after CSA. In this work, we will present original techniques able to correct charge losses after CSA even when multiple pixels are involved. Sub-millimeter cadmium-zinc-telluride (CdZnTe or CZT) pixel detectors were investigated with both uncollimated radiation sources and collimated synchrotron X rays, at energies below and above the K-shell absorption energy of the CZT material. These activities are in the framework of an international collaboration on the development of energy-resolved photon counting (ERPC) systems for spectroscopic X-ray imaging up to 150 keV.

4.
J Synchrotron Radiat ; 27(Pt 5): 1180-1189, 2020 Sep 01.
Article in English | MEDLINE | ID: mdl-32876592

ABSTRACT

Cadmium-zinc-telluride (CZT) pixel detectors represent a consolidated choice for the development of room-temperature spectroscopic X-ray imagers, finding important applications in medical imaging, often as detection modules of a variety of new SPECT and CT systems. Detectors with 3-5 mm thicknesses are able to efficiently detect X-rays up to 140 keV giving reasonable room-temperature energy resolution. In this work, the room-temperature performance of 3 mm-thick CZT pixel detectors, recently developed at IMEM/CNR of Parma (Italy), is presented. Sub-millimetre detector arrays with pixel pitch less than 500 µm were fabricated. The detectors are characterized by good room-temperature performance even at high bias voltage operation (6000 V cm-1), with energy resolutions (FWHM) of 3% (1.8 keV) and 1.6% (2 keV) at 59.5 keV and 122.1 keV, respectively. Charge-sharing investigations were performed with both uncollimated and collimated synchrotron X-ray beams with particular attention to recovering the charge losses at the inter-pixel gap region. High rate measurements demonstrated the absence of high-flux radiation-induced polarization phenomena up to 25 × 106 photons mm-2 s-1.

5.
Sensors (Basel) ; 20(10)2020 May 12.
Article in English | MEDLINE | ID: mdl-32408497

ABSTRACT

Since the late 2000s, the availability of high-quality cadmium zinc telluride (CdZnTe) has greatly increased. The excellent spectroscopic performance of this material has enabled the development of detectors with volumes exceeding 1 cm3 for use in the detection of nuclear materials. CdZnTe is also of great interest to the photon science community for applications in X-ray imaging cameras at synchrotron light sources and free electron lasers. Historically, spatial variations in the crystal properties and temporal instabilities under high-intensity irradiation has limited the use of CdZnTe detectors in these applications. Recently, Redlen Technologies have developed high-flux-capable CdZnTe material (HF-CdZnTe), which promises improved spatial and temporal stability. In this paper, the results of the characterization of 10 HF-CdZnTe detectors with dimensions of 20.35 mm × 20.45 mm × 2.00 mm are presented. Each sensor has 80 × 80 pixels on a 250-m pitch and were flip-chip-bonded to the STFC HEXITEC ASIC. These devices show excellent spectroscopic performance at room temperature, with an average Full Width at Half Maximum (FWHM) of 0.83 keV measured at 59.54 keV. The effect of tellurium inclusions in these devices was found to be negligible; however, some detectors did show significant concentrations of scratches and dislocation walls. An investigation of the detector stability over 12 h of continuous operation showed negligible changes in performance.

6.
J Synchrotron Radiat ; 27(Pt 2): 319-328, 2020 Mar 01.
Article in English | MEDLINE | ID: mdl-32153270

ABSTRACT

In this work, the spectroscopic performances of new cadmium-zinc-telluride (CZT) pixel detectors recently developed at IMEM-CNR of Parma (Italy) are presented. Sub-millimetre arrays with pixel pitch less than 500 µm, based on boron oxide encapsulated vertical Bridgman grown CZT crystals, were fabricated. Excellent room-temperature performance characterizes the detectors even at high-bias-voltage operation (9000 V cm-1), with energy resolutions (FWHM) of 4% (0.9 keV), 1.7% (1 keV) and 1.3% (1.6 keV) at 22.1, 59.5 and 122.1 keV, respectively. Charge-sharing investigations were performed with both uncollimated and collimated synchrotron X-ray beams with particular attention to the mitigation of the charge losses at the inter-pixel gap region. High-rate measurements demonstrated the absence of high-flux radiation-induced polarization phenomena up to 2 × 106 photons mm-2 s-1. These activities are in the framework of an international collaboration on the development of energy-resolved photon-counting systems for high-flux energy-resolved X-ray imaging.

7.
J Synchrotron Radiat ; 25(Pt 4): 1078-1092, 2018 Jul 01.
Article in English | MEDLINE | ID: mdl-29979169

ABSTRACT

Charge losses at the inter-pixel gap are typical drawbacks in cadmium-zinc-telluride (CZT) pixel detectors. In this work, an original technique able to correct charge losses occurring after the application of charge-sharing addition (CSA) is presented. The method, exploiting the strong relation between the energy after CSA and the beam position at the inter-pixel gap, allows the recovery of charge losses and improvements in energy resolution. Sub-millimetre CZT pixel detectors were investigated with both uncollimated radiation sources and collimated synchrotron X-rays, at energies below and above the K-shell absorption energy of the CZT material. The detectors are DC coupled to fast and low-noise charge-sensitive preamplifiers (PIXIE ASIC) and followed by a 16-channel digital readout electronics, performing multi-parameter analysis (event arrival time, pulse shape, pulse height). Induced-charge pulses with negative polarity were also observed in the waveforms from the charge-sensitive preamplifiers (CSPs) at energies >60 keV. The shape and the height of these pulses were analysed, and their role in the mitigation of charge losses in CZT pixel detectors. These activities are in the framework of an international collaboration on the development of energy-resolved photon-counting systems for spectroscopic X-ray imaging (5-140 keV).

8.
J Synchrotron Radiat ; 25(Pt 1): 257-271, 2018 Jan 01.
Article in English | MEDLINE | ID: mdl-29271775

ABSTRACT

Cadmium-zinc-telluride (CZT) arrays with photon-counting and energy-resolving capabilities are widely proposed for next-generation X-ray imaging systems. This work presents the performance of a 2 mm-thick CZT pixel detector, with pixel pitches of 500 and 250 µm, dc coupled to a fast and low-noise ASIC (PIXIE ASIC), characterized only by the preamplifier stage. A custom 16-channel digital readout electronics was used, able to digitize and process continuously the signals from each output ASIC channel. The digital system performs on-line fast pulse shape and height analysis, with a low dead-time and reasonable energy resolution at both low and high fluxes. The spectroscopic response of the system to photon energies below (109Cd source) and above (241Am source) the K-shell absorption energy of the CZT material was investigated, with particular attention to the mitigation of charge sharing and pile-up. The detector allows high bias voltage operation (>5000 V cm-1) and good energy resolution at moderate cooling (3.5% and 5% FWHM at 59.5 keV for the 500 and 250 µm arrays, respectively) by using fast pulse shaping with a low dead-time (300 ns). Charge-sharing investigations were performed using a fine time coincidence analysis (TCA), with very short coincidence time windows up to 10 ns. For the 500 µm pitch array (250 µm pitch array), sharing percentages of 36% (52%) and 60% (82%) at 22.1 and 59.5 keV, respectively, were measured. The potential of the pulse shape analysis technique for charge-sharing detection for corner/border pixels and at high rate conditions (250 kcps pixel-1), where the TCA fails, is also shown. Measurements demonstrated that significant amounts of charge are lost for interactions occurring in the volume of the inter-pixel gap. This charge loss must be accounted for in the correction of shared events. These activities are within the framework of an international collaboration on the development of energy-resolved photon-counting systems for high-flux energy-resolved X-ray imaging (1-140 keV).

9.
IEEE Trans Med Imaging ; 36(9): 1784-1795, 2017 09.
Article in English | MEDLINE | ID: mdl-28541197

ABSTRACT

Contrast-enhanced digital mammography (CEDM) is an alternative to conventional X-ray mammography for imaging dense breasts. However, conventional approaches to CEDM require a double exposure of the patient, implying higher dose, and risk of incorrect image registration due to motion artifacts. A novel approach is presented, based on hyperspectral imaging, where a detector combining positional and high-resolution spectral information (in this case based on Cadmium Telluride) is used. This allows simultaneous acquisition of the two images required for CEDM. The approach was tested on a custom breast-equivalent phantom containing iodinated contrast agent (Niopam 150®). Two algorithms were used to obtain images of the contrast agent distribution: K-edge subtraction (KES), providing images of the distribution of the contrast agent with the background structures removed, and a dual-energy (DE) algorithm, providing an iodine-equivalent image and a water-equivalent image. The high energy resolution of the detector allowed the selection of two close-by energies, maximising the signal in KES images, and enhancing the visibility of details with the low surface concentration of contrast agent. DE performed consistently better than KES in terms of contrast-to-noise ratio of the details; moreover, it allowed a correct reconstruction of the surface concentration of the contrast agent in the iodine image. Comparison with CEDM with a conventional detector proved the superior performance of hyperspectral CEDM in terms of the image quality/dose tradeoff.


Subject(s)
Mammography , Breast , Humans , Phantoms, Imaging , Radiographic Image Enhancement , Radiographic Image Interpretation, Computer-Assisted , X-Rays
10.
Proc Math Phys Eng Sci ; 470(2165): 20130629, 2014 May 08.
Article in English | MEDLINE | ID: mdl-24808753

ABSTRACT

In recent times, there has been a drive to develop non-destructive X-ray imaging techniques that provide chemical or physical insight. To date, these methods have generally been limited; either requiring raster scanning of pencil beams, using narrow bandwidth radiation and/or limited to small samples. We have developed a novel full-field radiographic imaging technique that enables the entire physio-chemical state of an object to be imaged in a single snapshot. The method is sensitive to emitted and scattered radiation, using a spectral imaging detector and polychromatic hard X-radiation, making it particularly useful for studying large dense samples for materials science and engineering applications. The method and its extension to three-dimensional imaging is validated with a series of test objects and demonstrated to directly image the crystallographic preferred orientation and formed precipitates across an aluminium alloy friction stir weld section.

11.
Analyst ; 138(3): 755-9, 2013 Feb 21.
Article in English | MEDLINE | ID: mdl-23145429

ABSTRACT

X-ray tomography is a ubiquitous tool used, for example, in medical diagnosis, explosives detection or to check structural integrity of complex engineered components. Conventional tomographic images are formed by measuring many transmitted X-rays and later mathematically reconstructing the object, however the structural and chemical information carried by scattered X-rays of different wavelengths is not utilised in any way. We show how a very simple; laboratory-based; high energy X-ray system can capture these scattered X-rays to deliver 3D images with structural or chemical information in each voxel. This type of imaging can be used to separate and identify chemical species in bulk objects with no special sample preparation. We demonstrate the capability of hyperspectral imaging by examining an electronic device where we can clearly distinguish the atomic composition of the circuit board components in both fluorescence and transmission geometries. We are not only able to obtain attenuation contrast but also to image chemical variations in the object, potentially opening up a very wide range of applications from security to medical diagnostics.

SELECTION OF CITATIONS
SEARCH DETAIL
...