Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 105
Filter
Add more filters










Publication year range
1.
Bioorg Chem ; 148: 107489, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38797065

ABSTRACT

The number of opioid-related overdose deaths and individuals that have suffered from opioid use disorders have significantly increased over the last 30 years. FDA approved maintenance therapies to treat opioid use disorder may successfully curb drug craving and prevent relapse but harbor adverse effects that reduce patient compliance. This has created a need for new chemical entities with improved patient experience. Previously our group reported a novel lead compound, NAT, a mu-opioid receptor antagonist that potently antagonized the antinociception of morphine and showed significant blood-brain barrier permeability. However, NAT belongs to thiophene containing compounds which are known structural alerts for potential oxidative metabolism. To overcome this, 15 NAT derivatives with various substituents at the 5'-position of the thiophene ring were designed and their structure-activity relationships were studied. These derivatives were characterized for their binding affinity, selectivity, and functional activity at the mu opioid receptor and assessed for their ability to antagonize the antinociceptive effects of morphine in vivo. Compound 12 showed retention of the basic pharmacological attributes of NAT while improving the withdrawal effects that were experienced in opioid-dependent mice. Further studies will be conducted to fully characterize compound 12 to examine whether it would serve as a new lead for opioid use disorder treatment and management.


Subject(s)
Receptors, Opioid, mu , Animals , Structure-Activity Relationship , Mice , Receptors, Opioid, mu/metabolism , Receptors, Opioid, mu/antagonists & inhibitors , Humans , Molecular Structure , Thiophenes/chemistry , Thiophenes/pharmacology , Thiophenes/chemical synthesis , Thiophenes/therapeutic use , Male , Dose-Response Relationship, Drug , Analgesics, Opioid/pharmacology , Analgesics, Opioid/chemistry , Narcotic Antagonists/pharmacology , Narcotic Antagonists/chemistry , Morphine/pharmacology
2.
J Med Chem ; 67(11): 9552-9574, 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38814086

ABSTRACT

Despite the availability of numerous pain medications, the current array of Food and Drug Administration-approved options falls short in adequately addressing pain states for numerous patients and consequently worsens the opioid crisis. Thus, it is imperative for basic research to develop novel and nonaddictive pain medications. Toward addressing this clinical goal, nalfurafine (NLF) was chosen as a lead and its structure-activity relationship (SAR) systematically studied through design, syntheses, and in vivo characterization of 24 analogues. Two analogues, 21 and 23, showed longer durations of action than NLF in a warm-water tail immersion assay, produced in vivo effects primarily mediated by KOR and DOR, penetrated the blood-brain barrier, and did not function as reinforcers. Additionally, 21 produced fewer sedative effects than NLF. Taken together, these results aid the understanding of NLF SAR and provide insights for future endeavors in developing novel nonaddictive therapeutics to treat pain.


Subject(s)
Morphinans , Spiro Compounds , Structure-Activity Relationship , Spiro Compounds/chemistry , Spiro Compounds/pharmacology , Spiro Compounds/chemical synthesis , Animals , Morphinans/pharmacology , Morphinans/chemistry , Morphinans/chemical synthesis , Morphinans/therapeutic use , Mice , Male , Humans , Receptors, Opioid, kappa/agonists , Receptors, Opioid, kappa/metabolism , Pain Management/methods , Pain/drug therapy , Analgesics/pharmacology , Analgesics/chemistry , Analgesics/chemical synthesis , Analgesics/therapeutic use
3.
J Pharmacol Exp Ther ; 2024 Jan 23.
Article in English | MEDLINE | ID: mdl-38262742

ABSTRACT

MJN110 inhibits the enzyme monoacylglycerol lipase (MAGL) to increase levels of the endocannabinoid (eCB) 2-arachidonoylglycerol (2-AG), an endogenous high-efficacy agonist of cannabinoid 1 and 2 receptors (CB1/2R). MAGL inhibitors are under consideration as candidate analgesics, and we reported previously that acute MJN110 produced partial antinociception in an assay of pain-related behavioral depression in mice. Given the need for repeated analgesic administration in many pain patients and the potential for analgesic tolerance during repeated treatment, this study examined antinociceptive effects of repeated MJN110 on pain-related behavioral depression and CB1R-mediated G-protein function. Male and female ICR mice were treated daily for 7 days in a 2x2 design with (a) 1.0 mg/kg/day MJN110or its vehicle followed by (b) intraperitoneal injection of dilute lactic acid (IP acid) or its vehicle as a visceral noxious stimulus to depress nesting behavior. After behavioral testing, G-protein activity was assessed in lumbar spinal cord andfive brain regions using an assay of CP55,940-stimulated [35S]GTPÉ£S activation. As reported previously, acute MJN110 produced partial but significant relief of IP acid-induced nesting depression on Day 1. After 7 days, MJN110 continued to produce significant but partial antinociception in males, while antinociceptive tolerance developed in females. Repeated MJN110 also produced modest decreases in maximum levels of CP55,940-induced [35S]GTPÉ£S binding in spinal cord and most brain regions. These results indicate that repeated treatment with a relatively low antinociceptive MJN110 dose produces only partial and sex-dependent transient antinociception associated with the emergence of CB1R desensitization in this model of IP acid-induced nesting depression. Significance Statement The drug MJN110 inhibits monoacylglycerol lipase (MAGL) to increase levels of the endogenous cannabinoid 2-arachidonoylglycerol and produce potentially useful therapeutic effects including analgesia. This study used an assay of pain-related behavioral depression in mice to show that repeated MJN110 treatment produced (1) weak but sustained antinociception in male mice, (2) antinociceptive tolerance in females, and (3) modest cannabinoid-receptor desensitization that varied by region and sex. Antinociceptive tolerance may limit the utility of MJN110 for treatment of pain.

4.
J Med Chem ; 67(1): 603-619, 2024 01 11.
Article in English | MEDLINE | ID: mdl-38156970

ABSTRACT

While there are approved therapeutics to treat opioid overdoses, the need for treatments to reverse overdoses due to ultrapotent fentanyls remains unmet. This may be due in part to an adrenergic mechanism of fentanyls in addition to their stereotypical mu-opioid receptor (MOR) effects. Herein, we report our efforts to further understanding of the functions these distinct mechanisms impart. Employing the known MOR neutral antagonist phenylfentanil as a lead, 17 analogues were designed based on the concept of isosteric replacement. To probe mechanisms of action, these analogues were pharmacologically evaluated in vitro and in vivo, while in silico modeling studies were also conducted on phenylfentanil. While it did not indicate MOR involvement in vivo, phenylfentanil yielded respiratory minute volumes similar to those caused by fentanyl. Taken together with molecular modeling studies, these results indicated that respiratory effects of fentanyls may also correlate to inhibition of both α1A- and α1B-adrenergic receptors.


Subject(s)
Adrenergic Agents , Fentanyl , Fentanyl/pharmacology , Receptors, Opioid, mu , Narcotic Antagonists , Analgesics, Opioid/pharmacology
5.
Pharmacol Res Perspect ; 11(4): e01111, 2023 08.
Article in English | MEDLINE | ID: mdl-37381112

ABSTRACT

Low-efficacy mu-opioid receptor (MOR) agonists represent promising therapeutics, but existing compounds (e.g., buprenorphine, nalbuphine) span a limited range of low MOR efficacies and have poor MOR selectivity. Accordingly, new and selective low-efficacy MOR agonists are of interest. A novel set of chiral C9-substituted phenylmorphans has been reported to display improved MOR selectivity and a range of high-to-low MOR efficacies under other conditions; however, a full opioid receptor binding profile for these drugs has not been described. Additionally, studies in mice will be useful for preclinical characterization of these novel compounds, but the pharmacology of these drugs in mice has also not been examined. Accordingly, the present study characterized the binding selectivity and in vitro efficacy of these compounds using assays of opioid receptor binding and ligand-stimulated [35 S]GTPÉ£S binding. Additionally, locomotor effects were evaluated as a first step for in vivo behavioral assessment in mice. The high-efficacy MOR agonist and clinically effective antidepressant tianeptine was included as a comparator. In binding studies, all phenylmorphans showed improved MOR selectivity relative to existing lower-efficacy MOR agonists. In the ligand-stimulated [35 S]GTPÉ£S binding assay, seven phenylmorphans had graded levels of sub-buprenorphine MOR efficacy. In locomotor studies, the compounds again showed graded efficacy with a rapid onset and ≥1 h duration of effects, evidence for MOR mediation, and minor sex differences. Tianeptine functioned as a high-efficacy MOR agonist. Overall, these in vitro and in vivo studies support the characterization of these compounds as MOR-selective ligands with graded MOR efficacy and utility for further behavioral studies in mice.


Subject(s)
Analgesics, Opioid , Buprenorphine , Receptors, Opioid, mu , Animals , Female , Male , Mice , Analgesics, Opioid/pharmacology , Buprenorphine/pharmacology , Guanosine 5'-O-(3-Thiotriphosphate) , Ligands , Receptors, Opioid, mu/agonists
6.
J Med Chem ; 66(1): 577-595, 2023 01 12.
Article in English | MEDLINE | ID: mdl-36538027

ABSTRACT

The search for selective opioid ligands with desired pharmacological potency and improved safety profile has always been an area of interest. Our previous effort yielded a potent opioid modulator, NAN, a 6α-N-7'-indolyl-substituted naltrexamine derivative, which exhibited promising pharmacological activities both in vitro and in vivo. However, significant human ether-a-go-go-related gene (hERG) liability limited its further development. Therefore, a systematic structural modification on NAN was conducted in order to alleviate hERG toxicity while preserving pharmacological properties, which led to the discovery of 2'-methylindolyl derivative compound 21. Compared to NAN, compound 21 manifested overall improved pharmacological profiles. Follow-up hERG channel inhibition evaluation revealed a seven-fold decreased potency of compound 21 compared to NAN. Furthermore, several fundamental drug-like property evaluations suggested a reasonable ADME profile of 21. Collectively, compound 21 appeared to be a promising opioid modulator for further development as a novel therapeutic agent toward opioid use disorder treatments.


Subject(s)
Analgesics, Opioid , Receptors, Opioid , Humans , Analgesics, Opioid/pharmacology , Ether-A-Go-Go Potassium Channels , Ligands
7.
ACS Chem Neurosci ; 13(24): 3608-3628, 2022 12 21.
Article in English | MEDLINE | ID: mdl-36449691

ABSTRACT

Discovery of analgesics void of abuse liability is critical to battle the opioid crisis in the United States. Among many strategies to achieve this goal, targeting more than one opioid receptor seems promising to minimize this unwanted side effect while achieving a reasonable therapeutic profile. In the process of understanding the structure-activity relationship of nalfurafine, we identified a potential analgesic agent, NMF, as a dual kappa opioid receptor/delta opioid receptor agonist with minimum abuse liability. Further characterizations, including primary in vitro ADMET studies (hERG toxicity, plasma protein binding, permeability, and hepatic metabolism), and in vivo pharmacodynamic and toxicity profiling (time course, abuse liability, tolerance, withdrawal, respiratory depression, body weight, and locomotor activity) further confirmed NMF as a promising drug candidate for future development.


Subject(s)
Analgesics, Opioid , Morphinans , Humans , Analgesics, Opioid/chemistry , Receptors, Opioid, kappa/agonists , Morphinans/pharmacology , Analgesics/pharmacology , Structure-Activity Relationship , Receptors, Opioid, mu/agonists
8.
Molecules ; 27(19)2022 Sep 30.
Article in English | MEDLINE | ID: mdl-36234992

ABSTRACT

Four sets of diastereomeric C9-alkenyl 5-phenylmorphans, varying in the length of the C9-alkenyl chain, were designed to examine the effect of these spatially distinct ligands on opioid receptors. Functional activity was obtained by forskolin-induced cAMP accumulation assays and several compounds were examined in the [35S]GTPgS assay and in an assay for respiratory depression. In each of the four sets, similarities and differences were observed dependent on the length of their C9-alkenyl chain and, most importantly, their stereochemistry. Three MOR antagonists were found to be as or more potent than naltrexone and, unlike naltrexone, none had MOR, KOR, or DOR agonist activity. Several potent MOR full agonists were obtained, and, of particular interest partial agonists were found that exhibited less respiratory depression than that caused by morphine. The effect of stereochemistry and the length of the C9-alkenyl chain was also explored using molecular modeling. The MOR antagonists were found to interact with the inactive (4DKL) MOR crystal structures and agonists were found to interact with the active (6DDF) MOR crystal structures. The comparison of their binding modes at the mouse MOR was used to gain insight into the structural basis for their stereochemically induced pharmacological differences.


Subject(s)
Naltrexone , Respiratory Insufficiency , Animals , CHO Cells , Colforsin , Cricetinae , Ligands , Mice , Morphine/pharmacology , Receptors, Opioid/metabolism , Receptors, Opioid, delta/metabolism , Receptors, Opioid, mu/metabolism
9.
J Med Chem ; 65(6): 4991-5003, 2022 03 24.
Article in English | MEDLINE | ID: mdl-35255683

ABSTRACT

Opioid-induced constipation (OIC) is a common adverse effect of opioid analgesics. Peripherally acting µ opioid receptor antagonists (PAMORAs) can be applied in the treatment of OIC without compromising the analgesic effects. NAP, a 6ß-N-4-pyridyl-substituted naltrexamine derivative, was previously identified as a potent and selective MOR antagonist mainly acting peripherally but with some CNS effects. Herein, we introduced a highly polar aromatic moiety, for example, a pyrazolyl or imidazolyl ring to decrease CNS MPO scores in order to reduce passive BBB permeability. Four compounds 2, 5, 17, and 19, when administered orally, were able to increase intestinal motility during morphine-induced constipation in the carmine red dye assays. Among them, compound 19 (p.o.) improved GI tract motility by 75% while orally administered NAP and methylnaltrexone showed no significant effects at the same dose. Thus, this compound seemed a promising agent to be further developed as an oral treatment for OIC.


Subject(s)
Opioid-Induced Constipation , Analgesics, Opioid/adverse effects , Constipation/chemically induced , Constipation/drug therapy , Humans , Ligands , Naltrexone/pharmacology , Naltrexone/therapeutic use , Narcotic Antagonists/pharmacology , Narcotic Antagonists/therapeutic use , Receptors, Opioid, mu
10.
J Med Chem ; 65(6): 5095-5112, 2022 03 24.
Article in English | MEDLINE | ID: mdl-35255685

ABSTRACT

The µ opioid receptor (MOR) has been an intrinsic target to develop treatment of opioid use disorders (OUD). Herein, we report our efforts on developing centrally acting MOR antagonists by structural modifications of 17-cyclopropylmethyl-3,14-dihydroxy-4,5α-epoxy-6ß-[(4'-pyridyl) carboxamido] morphinan (NAP), a peripherally acting MOR-selective antagonist. An isosteric replacement concept was applied and incorporated with physiochemical property predictions in the molecular design. Three analogs, namely, 25, 26, and 31, were identified as potent MOR antagonists in vivo with significantly fewer withdrawal symptoms than naloxone observed at similar doses. Furthermore, brain and plasma drug distribution studies supported the outcomes of our design strategy on these compounds. Taken together, our isosteric replacement of pyridine with pyrrole, furan, and thiophene provided insights into the structure-activity relationships of NAP and aided the understanding of physicochemical requirements of potential CNS acting opioids. These efforts resulted in potent, centrally efficacious MOR antagonists that may be pursued as leads to treat OUD.


Subject(s)
Morphinans , Opioid-Related Disorders , Analgesics, Opioid/chemistry , Central Nervous System , Humans , Morphinans/chemistry , Naloxone , Narcotic Antagonists/pharmacology , Narcotic Antagonists/therapeutic use , Opioid-Related Disorders/drug therapy , Receptors, Opioid, mu
11.
Bioorg Chem ; 120: 105641, 2022 03.
Article in English | MEDLINE | ID: mdl-35093692

ABSTRACT

The functional interactions between opioid and chemokine receptors have been implicated in the pathological process of chronic pain. Mounting studies have indicated the possibility that a MOR-CXCR4 heterodimer may be involved in nociception and related pharmacologic effects. Herein we have synthesized a series of bivalent ligands containing both MOR agonist and CXCR4 antagonist pharmacophores with an aim to investigate the functional interactions between these two receptors. In vitro studies demonstrated reasonable recognition of designed ligands at both respective receptors. Further antinociceptive testing in mice revealed compound 1a to be the most promising member of this series. Additional molecular modeling studies corroborated the findings observed. Taken together, we identified the first bivalent ligand 1a showing promising antinociceptive effect by targeting putative MOR-CXCR4 heterodimers, which may serve as a novel chemical probe to further develop more potent bivalent ligands with potential application in analgesic therapies for chronic pain management.


Subject(s)
Analgesics , Receptors, Opioid, mu , Analgesics/pharmacology , Analgesics/therapeutic use , Animals , Ligands , Mice , Models, Molecular , Signal Transduction
12.
J Med Chem ; 64(11): 7702-7723, 2021 06 10.
Article in English | MEDLINE | ID: mdl-34027668

ABSTRACT

Crystal structures of ligand-bound G-protein-coupled receptors provide tangible templates for rationally designing molecular probes. Herein, we report the structure-based design, chemical synthesis, and biological investigations of bivalent ligands targeting putative mu opioid receptor C-C motif chemokine ligand 5 (MOR-CCR5) heterodimers. The bivalent ligand VZMC013 possessed nanomolar level binding affinities for both the MOR and CCR5, inhibited CCL5-stimulated calcium mobilization, and remarkably improved anti-HIV-1BaL activity over previously reported bivalent ligands. VZMC013 inhibited viral infection in TZM-bl cells coexpressing CCR5 and MOR to a greater degree than cells expressing CCR5 alone. Furthermore, VZMC013 blocked human immunodeficiency virus (HIV)-1 entry in peripheral blood mononuclear cells (PBMC) cells in a concentration-dependent manner and inhibited opioid-accelerated HIV-1 entry more effectively in phytohemagglutinin-stimulated PBMC cells than in the absence of opioids. A three-dimensional molecular model of VZMC013 binding to the MOR-CCR5 heterodimer complex is constructed to elucidate its mechanism of action. VZMC013 is a potent chemical probe targeting MOR-CCR5 heterodimers and may serve as a pharmacological agent to inhibit opioid-exacerbated HIV-1 entry.


Subject(s)
Drug Design , Ligands , Receptors, CCR5/metabolism , Receptors, Opioid, mu/metabolism , Analgesics, Opioid/pharmacology , Anti-HIV Agents/chemistry , Anti-HIV Agents/metabolism , Anti-HIV Agents/pharmacology , Binding Sites , Dimerization , HIV-1/drug effects , HIV-1/physiology , Humans , Leukocytes, Mononuclear/cytology , Leukocytes, Mononuclear/metabolism , Leukocytes, Mononuclear/virology , Maraviroc/chemistry , Molecular Docking Simulation , Molecular Dynamics Simulation , Naltrexone/chemistry , Phytohemagglutinins/pharmacology , Protein Binding , Receptors, CCR5/chemistry , Receptors, Opioid, mu/chemistry , Virus Internalization/drug effects
13.
Bioorg Med Chem Lett ; 41: 127953, 2021 06 01.
Article in English | MEDLINE | ID: mdl-33766769

ABSTRACT

In the present work, we reported the application of a nitrogen-walk approach on developing a series of novel opioid ligands containing an azaindole moiety at the C6-position of the epoxymorphinan skeleton. In vitro study results showed that introducing a nitrogen atom around the indole moiety not only retained excellent binding affinity, but also led to significant functional switch at the mu opioid receptor (MOR). Further computational investigations provided corroborative evidence and plausible explanations of the results of the in vitro studies. Overall, our current work implemented a series of novel MOR ligands with high binding affinity and considerably low efficacy, which may shed light on rational design of low efficacy MOR ligands for opioid use disorder therapeutics.


Subject(s)
Naltrexone/analogs & derivatives , Nitrogen/chemistry , Receptors, Opioid, mu/drug effects , Binding Sites , Humans , Ligands , Models, Molecular , Molecular Docking Simulation , Naltrexone/chemical synthesis , Naltrexone/pharmacology , Opioid-Related Disorders/drug therapy , Protein Conformation
14.
Bioorg Chem ; 109: 104702, 2021 04.
Article in English | MEDLINE | ID: mdl-33631465

ABSTRACT

In the present study, the role of 3-hydroxy group of a series of epoxymorphinan derivatives in their binding affinity and selectivity profiles toward the opioid receptors (ORs) has been investigated. It was found that the 3-hydroxy group was crucial for the binding affinity of these derivatives for all three ORs due to the fact that all the analogues 1a-e exhibited significantly higher binding affinities compared to their counterpart 3-dehydroxy ones 6a-e. Meanwhile most compounds carrying the 3-hydroxy group possessed similar selectivity profiles for the kappa opioid receptor over the mu opioid receptor as their corresponding 3-dehydroxy derivatives. [35S]-GTPγS functional assay results indicated that the 3-hydroxy group of these epoxymorphinan derivatives was important for maintaining their potency on the ORs with various effects. Further molecular modeling studies helped comprehend the remarkably different binding affinity and functional profiles between compound 1c (NCP) and its 3-dehydroxy analogue 6c.


Subject(s)
Morphinans/chemistry , Morphinans/pharmacology , Receptors, Opioid/metabolism , Models, Molecular , Molecular Docking Simulation , Molecular Structure , Protein Binding , Receptors, Opioid/chemistry
15.
Future Med Chem ; 13(6): 551-573, 2021 03.
Article in English | MEDLINE | ID: mdl-33590767

ABSTRACT

The modulation and selectivity mechanisms of seven mixed-action kappa opioid receptor (KOR)/mu opioid receptor (MOR) bitopic modulators were explored. Molecular modeling results indicated that the 'message' moiety of seven bitopic modulators shared the same binding mode with the orthosteric site of the KOR and MOR, whereas the 'address' moiety bound with different subdomains of the allosteric site of the KOR and MOR. The 'address' moiety of seven bitopic modulators bound to different subdomains of the allosteric site of the KOR and MOR may exhibit distinguishable allosteric modulations to the binding affinity and/or efficacy of the 'message' moiety. Moreover, the 3-hydroxy group on the phenolic moiety of the seven bitopic modulators induced selectivity to the KOR over the MOR.


Subject(s)
Receptors, Opioid, kappa/metabolism , Receptors, Opioid, mu/metabolism , Allosteric Regulation , Allosteric Site , Binding Sites , Humans , Ligands , Molecular Docking Simulation , Morphinans/chemistry , Morphinans/metabolism , Naltrexone/analogs & derivatives , Naltrexone/chemistry , Naltrexone/metabolism , Protein Binding , Receptors, Opioid, kappa/chemistry , Receptors, Opioid, mu/chemistry , Spiro Compounds/chemistry , Spiro Compounds/metabolism , Thermodynamics
16.
ACS Med Chem Lett ; 11(11): 2318-2324, 2020 Nov 12.
Article in English | MEDLINE | ID: mdl-33214847

ABSTRACT

A bivalent compound 1a featuring both a mu opioid receptor (MOR) and a CXCR4 antagonist pharmacophore (naltrexone and IT1t) was designed and synthesized. Further binding and functional studies demonstrated 1a acting as a MOR and a CXCR4 dual antagonist with reasonable binding affinities at both receptors. Furthermore, compound 1a seemed more effective than a combination of IT1t and naltrexone in inhibiting HIV entry at the presence of morphine. Additional molecular modeling results suggested that 1a may bind with the putative MOR-CXCR4 heterodimer to induce its anti-HIV activity. Collectively, bivalent ligand 1a may serve as a promising lead to develop chemical probes targeting the putative MOR-CXCR4 heterodimer in comprehending opioid exacerbated HIV-1 invasion.

17.
Neuropharmacology ; 166: 107935, 2020 04.
Article in English | MEDLINE | ID: mdl-31917153

ABSTRACT

Neuropathy is major source of chronic pain that can be caused by mechanically or chemically induced nerve injury. Intraplantar formalin injection produces local necrosis over a two-week period and has been used to model neuropathy in rats. To determine whether neuropathy alters dopamine (DA) receptor responsiveness in mesolimbic brain regions, we examined dopamine D1-like and D2-like receptor (D1/2R) signaling and expression in male rats 14 days after bilateral intraplantar formalin injections into both rear paws. D2R-mediated G-protein activation and expression of the D2R long, but not short, isoform were reduced in nucleus accumbens (NAc) core, but not in NAc shell, caudate-putamen or ventral tegmental area of formalin- compared to saline-treated rats. In addition, D1R-stimulated adenylyl cyclase activity was also reduced in NAc core, but not in NAc shell or prefrontal cortex, of formalin-treated rats, whereas D1R expression was unaffected. Other proteins involved in dopamine neurotransmission, including dopamine uptake transporter and tyrosine hydroxylase, were unaffected by formalin treatment. In behavioral tests, the potency of a D2R agonist to suppress intracranial self-stimulation (ICSS) was decreased in formalin-treated rats, whereas D1R agonist effects were not altered. The combination of reduced D2R expression and signaling in NAc core with reduced suppression of ICSS responding by a D2R agonist suggest a reduction in D2 autoreceptor function. Altogether, these results indicate that intraplantar formalin produces attenuation of highly specific DA receptor signaling processes in NAc core of male rats and suggest the development of a neuropathy-induced allostatic state in both pre- and post-synaptic DA receptor function.


Subject(s)
Formaldehyde/toxicity , Neuralgia/metabolism , Nucleus Accumbens/metabolism , Receptors, Dopamine D1/metabolism , Receptors, Dopamine D2/metabolism , Signal Transduction/physiology , Animals , Conditioning, Operant/drug effects , Conditioning, Operant/physiology , Disease Models, Animal , Dopamine Agonists/pharmacology , Dopamine Antagonists/pharmacology , Dose-Response Relationship, Drug , Male , Neuralgia/chemically induced , Nucleus Accumbens/drug effects , Rats , Rats, Sprague-Dawley , Receptors, Dopamine D1/agonists , Receptors, Dopamine D1/antagonists & inhibitors , Receptors, Dopamine D2/agonists , Signal Transduction/drug effects
18.
RSC Med Chem ; 11(1): 125-131, 2020 Jan 01.
Article in English | MEDLINE | ID: mdl-33479612

ABSTRACT

Opioid abuse and HIV/AIDS have been defined as synergistic epidemics. Opioids can accelerate HIV replication in the immune system by up-regulating the expression of HIV co-receptor CXCR4. Several hypotheses have been suggested as the mechanism of CXCR4 modulation by opioids through their activation on the mu opioid receptor (MOR). One hypothesis is the putative heterodimerization of the MOR and CXCR4 as a mechanism of cross-talk and subsequent exacerbation of HIV replication. Bivalent chemical probes can be powerful molecular tools to characterize protein-protein interactions, and modulate the function related to such interactions. Herein we report the design and synthesis of a novel bivalent probe to explore the putative MOR-CXCR4 dimerization and its potential pharmacological role in enhancing HIV progression. The developed bivalent probe was designed with two distinct pharmacophores linked through a spacer. One pharmacophore (naltrexone) will interact with the MOR and the other (IT1t) with the CXCR4. The overall synthetic routes to prepare the bivalent probe and its corresponding monovalent controls were comprised of 18-22 steps with acceptable yields. Preliminary biological evaluation showed that the bivalent probe preserved binding affinity and functional activity at both respective receptors, supporting the initial molecular design.

19.
Eur J Pharmacol ; 865: 172812, 2019 Dec 15.
Article in English | MEDLINE | ID: mdl-31743739

ABSTRACT

For thousands of years opioids have been the first-line treatment option for pain management. However, the tolerance and addiction potential of opioids limit their applications in clinic. NFP, a MOR/KOR dual-selective opioid antagonist, was identified as a ligand that significantly antagonized the antinociceptive effects of morphine with lesser withdrawal effects than naloxone at similar doses. To validate the potential application of NFP in opioid addiction treatment, a series of in vitro and in vivo assays were conducted to further characterize its pharmacological profile. In calcium mobilization assays and MOR internalization studies, NFP showed the apparent capacity to antagonize DAMGO-induced calcium flux and etorphine-induced MOR internalization. In contrast to the opioid agonists DAMGO and morphine, cells pretreated with NFP did not show apparent desensitization and down regulation of the MOR. Though in vitro bidirectional transport studies showed that NFP might be a P-gp substrate, in warm-water tail-withdrawal assays it was able to antagonize the antinociceptive effects of morphine indicating its potential central nervous system activity. Overall these results suggest that NFP is a promising dual selective opioid antagonist that may have the potential to be used therapeutically in opioid use disorder treatment.


Subject(s)
Morphinans/pharmacology , Opioid-Related Disorders/drug therapy , Receptors, Opioid, kappa/antagonists & inhibitors , Receptors, Opioid, mu/antagonists & inhibitors , Analgesics, Opioid/pharmacology , Animals , Biological Transport , CHO Cells , Caco-2 Cells , Calcium/metabolism , Cell Line, Tumor , Cricetulus , Enkephalin, Ala(2)-MePhe(4)-Gly(5)-/pharmacology , Humans , Ligands , Male , Mice, Inbred C57BL , Narcotic Antagonists/pharmacology , Receptors, Opioid, kappa/agonists , Receptors, Opioid, mu/agonists , Receptors, Opioid, mu/genetics , Receptors, Opioid, mu/metabolism
20.
J Med Chem ; 62(24): 11399-11415, 2019 12 26.
Article in English | MEDLINE | ID: mdl-31782922

ABSTRACT

Here, we described the structural modification of previously identified µ opioid receptor (MOR) antagonist NAN, a 6α-N-7'-indolyl substituted naltrexamine derivative, and its 6ß-N-2'-indolyl substituted analogue INTA by adopting the concept of "bivalent bioisostere". Three newly prepared opioid ligands, 25 (NBF), 31, and 38, were identified as potent MOR antagonists both in vitro and in vivo. Moreover, these three compounds significantly antagonized DAMGO-induced intracellular calcium flux and displayed varying degrees of inhibition on cAMP production. Furthermore, NBF produced much less significant withdrawal effects than naloxone in morphine-pelleted mice. Molecular modeling studies revealed that these bivalent bioisosteres may adopt similar binding modes in the MOR and the "address" portions of them may have negative or positive allosteric modulation effects on the function of their "message" portions compared with NAN and INTA. Collectively, our successful application of the "bivalent bioisostere concept" identified a promising lead to develop novel therapeutic agents toward opioid use disorder treatments.


Subject(s)
Drug Design , Drug Discovery , Morphinans/chemistry , Morphinans/pharmacology , Narcotic Antagonists/chemistry , Narcotic Antagonists/pharmacology , Receptors, Opioid, mu/antagonists & inhibitors , Animals , Calcium/metabolism , Cyclic AMP/metabolism , Ligands , Male , Mice , Opioid-Related Disorders/drug therapy , Radioligand Assay , Signal Transduction , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...