Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Transl Oncol ; 22: 101448, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35660848

ABSTRACT

Multiple myeloma (MM) treatment regimens have vastly improved since the introduction of immunomodulators, proteasome inhibitors, and anti-CD38 monoclonal antibodies; however, MM is considered an incurable disease due to inevitable relapse and acquired drug resistance. Understanding the molecular mechanism by which drug resistance is acquired will help create novel strategies to prevent relapse and help develop novel therapeutics to treat relapsed/refractory (RR)-MM patients. Currently, only homozygous deletion/mutation of TP53 gene due to "double-hits" on Chromosome 17p region is consistently associated with a poor prognosis. The exciting discovery of XPO1 overexpression and mislocalization of its cargos in the RR-MM cells has led to a novel treatment options. Clinical studies have demonstrated that the XPO1 inhibitor selinexor can restore sensitivity of RR-MM to PIs and dexamethasone. We will elaborate on the problems of MM treatment strategies and discuss the mechanism and challenges of using XPO1 inhibitors in RR-MM therapies while deliberating potential solutions.

2.
Ann Hematol ; 101(7): 1407-1420, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35585246

ABSTRACT

Our understanding of MM genomics has expanded rapidly in the past 5-10 years as a consequence of cytogenetic analyses obtained in routine clinical practice as well as the ability to perform whole-exome/genome sequencing and gene expression profiling on large patient data sets. This knowledge has offered new insights into disease biology and is increasingly defining high-risk genomic patterns. In this manuscript, we present a thorough review of our current knowledge of MM genomics. The epidemiology and biology of chromosomal abnormalities including both copy number abnormalities and chromosomal translocation are described in full with a focus on those most clinically impactful such as 1q amplification and del(17p) as well as certain chromosome 14 translocations. A review of our ever-expanding knowledge of genetic mutations derived from recent whole-genome/exome data sets is then reviewed including those that drive disease pathogenesis from precursor states as well as those that may impact clinical outcomes. We then transition and attempt to elucidate how both chromosomal abnormalities and gene mutations are evolving our understanding of disease risk. We conclude by offering our perspectives moving forward as to how we might apply whole-genome/exome-level data in addition to routine cytogenetic analyses to improve patient outcomes as well as further knowledge gaps that must be addressed.


Subject(s)
Multiple Myeloma , Chromosome Aberrations , Cytogenetic Analysis , Genomics , Humans , Multiple Myeloma/diagnosis , Multiple Myeloma/genetics , Multiple Myeloma/pathology , Translocation, Genetic
3.
Stem Cell Reports ; 17(6): 1428-1441, 2022 06 14.
Article in English | MEDLINE | ID: mdl-35561683

ABSTRACT

Receptor-interacting protein kinase 3 (Ripk3) is one of the critical mediators of inflammatory cytokine-stimulated signaling. Here we show that Ripk3 signaling selectively regulates both the number and the function of hematopoietic stem cells (HSCs) during stress conditions. Ripk3 signaling is not required for normal homeostatic hematopoiesis. However, in response to serial transplantation, inactivation of Ripk3 signaling prevents stress-induced HSC exhaustion and functional HSC attenuation, while in response to fractionated low doses of ionizing radiation (IR), inactivation of Ripk3 signaling accelerates leukemia/lymphoma development. In both situations, Ripk3 signaling is primarily stimulated by tumor necrosis factor-α. Activated Ripk3 signaling promotes the elimination of HSCs during serial transplantation and pre-leukemia stem cells (pre-LSCs) during fractionated IR by inducing Mlkl-dependent necroptosis. Activated Ripk3 signaling also attenuates HSC functioning and represses a pre-LSC-to-LSC transformation by promoting Mlkl-independent senescence. Furthermore, we demonstrate that Ripk3 signaling induces senescence in HSCs and pre-LSCs by attenuating ISR-mediated mitochondrial quality control.


Subject(s)
Leukemia, Radiation-Induced , Animals , Hematopoietic Stem Cells/metabolism , Mice , Necrosis/metabolism , Necrosis/pathology , Protein Kinases/metabolism , Receptor-Interacting Protein Serine-Threonine Kinases/genetics , Receptor-Interacting Protein Serine-Threonine Kinases/metabolism , Signal Transduction
4.
Br J Cancer ; 127(2): 223-236, 2022 07.
Article in English | MEDLINE | ID: mdl-35422078

ABSTRACT

INTRODUCTION: Splice modulators have been assessed clinically in treating haematologic malignancies exhibiting splice factor mutations and acute myeloid leukaemia. However, the mechanisms by which such modulators repress leukaemia remain to be elucidated. OBJECTIVES: The primary goal of this assessment was to assess the molecular mechanism by which the natural splice modulator GEX1A kills leukaemic cells in vitro and within in vivo mouse models. METHODS: Using human leukaemic cell lines, we assessed the overall sensitivity these cells have to GEX1A via EC50 analysis. We subsequently analysed its effects using in vivo xenograft mouse models and examined whether cell sensitivities were correlated to genetic characteristics or protein expression levels. We also utilised RT-PCR and RNAseq analyses to determine splice change and RNA expression level differences between sensitive and resistant leukaemic cell lines. RESULTS: We found that, in vitro, GEX1A induced an MCL-1 isoform shift to pro-apoptotic MCL-1S in all leukaemic cell types, though sensitivity to GEX1A-induced apoptosis was negatively associated with BCL-xL expression. In BCL-2-expressing leukaemic cells, GEX1A induced BCL-2-dependent apoptosis by converting pro-survival BCL-2 into a cell killer. Thus, GEX1A + selective BCL-xL inhibition induced synergism in killing leukaemic cells, while GEX1A + BCL-2 inhibition showed antagonism in BCL-2-expressing leukaemic cells. In addition, GEX1A sensitised FLT3-ITD+ leukaemic cells to apoptosis by inducing aberrant splicing and repressing the expression of FLT3-ITD. Consistently, in in vivo xenografts, GEX1A killed the bulk of leukaemic cells via apoptosis when combined with BCL-xL inhibition. Furthermore, GEX1A repressed leukaemia development by targeting leukaemia stem cells through inhibiting FASTK mitochondrial isoform expression across sensitive and non-sensitive leukaemia types. CONCLUSION: Our study suggests that GEX1A is a potent anti-leukaemic agent in combination with BCL-xL inhibitors, which targets leukaemic blasts and leukaemia stem cells through distinct mechanisms.


Subject(s)
Fatty Alcohols/pharmacology , Leukemia, Myeloid, Acute , Proto-Oncogene Proteins c-bcl-2 , Pyrans/pharmacology , Animals , Apoptosis , Cell Line, Tumor , Humans , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/pathology , Mice , Mutation , Myeloid Cell Leukemia Sequence 1 Protein/genetics , Protein Serine-Threonine Kinases , Proto-Oncogene Proteins c-bcl-2/metabolism , bcl-X Protein/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...