Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 49
Filter
1.
Res Sq ; 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-39011120

ABSTRACT

We designed a CD19-targeted CAR comprising a calibrated signaling module, termed 1XX, that differs from that of conventional CD28/CD3z and 4-1BB/CD3z CARs. Here we report the first-in-human, phase 1 clinical trial of 19(T2)28z-1XX CAR T cells in relapsed/refractory large B-cell lymphoma. We hypothesized that 1XX CAR T cells may be effective at low doses and investigated 4 doubling dose levels starting from 25x10 6 CAR T cells. The overall response rate (ORR) was 82% and complete response (CR) rate 71% in the entire cohort (n=28) and 88% ORR and 75% CR in 16 patients treated at 25x10 6 . With the median follow-up of 24 months, the 1-year EFS was 61% (95% CI: 45-82%). Overall, grade ≥3 CRS and ICANS rates were low at 4% and 7%. The calibrated potency of the 1XX CAR affords excellent efficacy at low cell doses and may benefit the treatment of other hematological malignancies, solid tumors and autoimmunity.

2.
Haematologica ; 108(10): 2664-2676, 2023 10 01.
Article in English | MEDLINE | ID: mdl-37226709

ABSTRACT

Understanding the molecular and phenotypic heterogeneity of cancer is a prerequisite for effective treatment. For chronic lymphocytic leukemia (CLL), recurrent genetic driver events have been extensively cataloged, but this does not suffice to explain the disease's diverse course. Here, we performed RNA sequencing on 184 CLL patient samples. Unsupervised analysis revealed two major, orthogonal axes of gene expression variation: the first one represented the mutational status of the immunoglobulin heavy variable (IGHV) genes, and concomitantly, the three-group stratification of CLL by global DNA methylation. The second axis aligned with trisomy 12 status and affected chemokine, MAPK and mTOR signaling. We discovered non-additive effects (epistasis) of IGHV mutation status and trisomy 12 on multiple phenotypes, including the expression of 893 genes. Multiple types of epistasis were observed, including synergy, buffering, suppression and inversion, suggesting that molecular understanding of disease heterogeneity requires studying such genetic events not only individually but in combination. We detected strong differentially expressed gene signatures associated with major gene mutations and copy number aberrations including SF3B1, BRAF and TP53, as well as del(17)(p13), del(13)(q14) and del(11)(q22.3) beyond dosage effect. Our study reveals previously underappreciated gene expression signatures for the major molecular subtypes in CLL and the presence of epistasis between them.


Subject(s)
Leukemia, Lymphocytic, Chronic, B-Cell , Humans , Leukemia, Lymphocytic, Chronic, B-Cell/genetics , Transcriptome , Trisomy , Prognosis , Epistasis, Genetic , Mutation
3.
Biomedicines ; 10(2)2022 Feb 03.
Article in English | MEDLINE | ID: mdl-35203582

ABSTRACT

Adoptive cell therapy with NY-ESO-1-specific T cells is a promising option for the treatment of soft tissue sarcoma (STS) but achieves only transient tumor control in the majority of cases. A strategy to optimize this cell therapeutic approach might be the modulation of the expression of the cancer-testis antigen NY-ESO-1 using histone deacetylase inhibitors (HDACis). In this study, the ex vivo effect of combining NY-ESO-1-specific T cells with the clinically approved pan HDACis panobinostat or vorionstat was investigated. Our data demonstrated that STS cells were sensitive to HDACis. Administration of HDACi prior to NY-ESO-1-specific T cells exerted enhanced lysis against the NY-ESO-1+ STS cell line SW982. This correlated with an increase in the NY-ESO-1 and HLA-ABC expression of SW982 cells, as well as increased CD25 expression on NY-ESO-1-specific T cells. Furthermore, the immune reactivity of NY-ESO-1-specific CD8+ T cells in terms of cytokine release was enhanced by HDACis. In summary, pretreatment with HDACis represents a potential means of enhancing the cytotoxic efficacy of NY-ESO-1-specific T cells against NY-ESO-1-positive STS.

5.
Oncol Rep ; 46(2)2021 Aug.
Article in English | MEDLINE | ID: mdl-34165175

ABSTRACT

Chimeric antigen receptor (CAR) T cells directed against CD19 (CD19.CAR T cells) have yielded impressive clinical responses in the treatment of patients with lymphoid malignancies. However, resistance and/or relapse can limit treatment outcome. Risk of tumor escape can be reduced by combining treatment strategies. Selective inhibitors of nuclear export (SINEs) directed against nuclear exportin­1 (XPO1) have demonstrated anti­tumor efficacy in several hematological malignancies. The aim of the present study was to evaluate the combination of CAR T cells with the SINE compounds eltanexor and selinexor. As expected, eltanexor and selinexor were toxic to CD19­positive malignant cells and the sensitivity of cells towards SINEs correlated with the levels of XPO1­expression in ALL cell lines. When SINEs and CAR T cells were simultaneously combined, SINEs exerted toxicity towards CAR T cells and impaired their function affecting cytotoxicity and cytokine release ability. Flow cytometry and western blot analysis revealed that eltanexor decreased the cytoplasmic concentration of the transcription factor phosphorylated­STAT3 in CAR T cells. Due to CAR T­cell toxicity, sequential use of SINEs and CAR T cells was evaluated: Cytotoxicity of CAR T cells increased significantly when target cells were pre­treated with the SINE compound eltanexor. In addition, exhaustion of CAR T cells decreased when target cells were pre­treated with eltanexor. In summary, whereas the concomitant use of SINEs and CAR T cells does not seem advisable, sequential use of SINEs and CAR T cells might improve the anti­tumor efficacy of CAR T cells.


Subject(s)
Antigens, CD19/metabolism , Hydrazines/pharmacology , Immunotherapy, Adoptive/methods , Neoplasms/immunology , Receptors, Chimeric Antigen/immunology , Triazoles/pharmacology , Active Transport, Cell Nucleus/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival/drug effects , Coculture Techniques , Combined Modality Therapy , Cytoplasm/metabolism , Humans , Karyopherins/metabolism , Neoplasms/metabolism , Neoplasms/therapy , Receptors, Cytoplasmic and Nuclear/metabolism , STAT3 Transcription Factor/metabolism , Time Factors , Exportin 1 Protein
6.
Front Immunol ; 12: 670088, 2021.
Article in English | MEDLINE | ID: mdl-34122428

ABSTRACT

Chimeric antigen receptor T (CAR-T) cells targeting CD19 came into clinical practice for the treatment of B cell lymphoma in 2018. However, patients being treated for B cell lymphoma often suffer from comorbidities such as chronic pain, cardiovascular diseases and arthritis. Thus, these patients frequently receive concomitant medications that include nonsteroidal anti-inflammatory drugs (NSAIDs) like cyclooxygenase (COX) inhibitors. Celecoxib, a selective COX-2 inhibitor, and aspirin, a non-selective COX-1 and COX-2 inhibitor, are being used as anti-inflammatory, analgesic and anti-pyretic drugs. In addition, several studies have also focused on the anti-neoplastic properties of COX-inhibitors. As the influence of COX-inhibitors on CD19.CAR-T cells is still unknown, we investigated the effect of celecoxib and aspirin on the quantity and quality of CD19.CAR-T cells at different concentrations with special regard to cytotoxicity, activation, cytokine release, proliferation and exhaustion. A significant effect on CAR-T cells could be observed for 0.1 mmol/L of celecoxib and for 4 mmol/L of aspirin. At these concentrations, we found that both COX-inhibitors could induce intrinsic apoptosis of CD19.CAR-T cells showing a significant reduction in the ratio of JC-10 red to JC-10 green CAR-T cells from 6.46 ± 7.03 (mean ± SD) to 1.76 ± 0.67 by celecoxib and to 4.41 ± 0.32 by aspirin, respectively. Additionally, the ratios of JC-10 red to JC-10 green Daudi cells were also decreased from 3.41 ± 0.30 to 0.77 ± 0.06 by celecoxib and to 1.26 ± 0.04 by aspirin, respectively. Although the cytokine release by CD19.CAR-T cells upon activation was not hampered by both COX-inhibitors, activation and proliferation of CAR-T cells were significantly inhibited via diminishing the NF-ĸB signaling pathway by a significant down-regulation of expression of CD27 on CD4+ and CD8+ CAR-T cells, followed by a clear decrease of phosphorylated NF-ĸB p65 in both CD4+ and CD8+ CAR-T cells by a factor of 1.8. Of note, COX-inhibitors hampered expansion and induced exhaustion of CAR-T cells in an antigen stress assay. Collectively, our findings indicate that the use of COX-inhibitors is a double-edged sword that not only induces apoptosis in tumor cells but also impairs the quantity and quality of CAR-T cells. Therefore, COX-inhibitors should be used with caution in patients with B cell lymphoma under CAR-T cell therapy.


Subject(s)
Antigens, CD19/genetics , Aspirin/pharmacology , Celecoxib/pharmacology , Cyclooxygenase Inhibitors/pharmacology , Immunotherapy, Adoptive , Lymphoma, B-Cell/therapy , Receptors, Chimeric Antigen/genetics , T-Lymphocytes/drug effects , Antigens, CD19/immunology , Apoptosis/drug effects , Cell Proliferation/drug effects , Coculture Techniques , Cyclooxygenase 2 Inhibitors/pharmacology , Cytokines/metabolism , Cytotoxicity, Immunologic/drug effects , Humans , Inflammation Mediators/metabolism , K562 Cells , Lymphocyte Activation/drug effects , Lymphoma, B-Cell/immunology , Lymphoma, B-Cell/metabolism , Lymphoma, B-Cell/pathology , Receptors, Chimeric Antigen/metabolism , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , T-Lymphocytes/transplantation
7.
Angew Chem Int Ed Engl ; 60(20): 11158-11162, 2021 05 10.
Article in English | MEDLINE | ID: mdl-33656236

ABSTRACT

The folding and export of proteins and hydrolysis of unfolded proteins are disbalanced in the endoplasmic reticulum (ER) of cancer cells, leading to so-called ER stress. Agents further augmenting this effect are used as anticancer drugs including clinically approved proteasome inhibitors bortezomib and carfilzomib. However, these drugs can affect normal cells, which also rely strongly on ER functions, leading, for example, to accumulation of reactive oxygen species (ROS). To address this problem, we have developed ER-targeted prodrugs activated only in cancer cells in the presence of elevated ROS amounts. These compounds are conjugates of cholic acid with N-alkylaminoferrocene-based prodrugs. We confirmed their accumulation in the ER of cancer cells, their anticancer efficacy, and cancer cell specificity. These prodrugs induce ER stress, attenuate mitochondrial membrane potential, and generate mitochondrial ROS leading to cell death via necrosis. We also demonstrated that the new prodrugs are activated in vivo in Nemeth-Kellner lymphoma (NK/Ly) murine model.


Subject(s)
Antineoplastic Agents/pharmacology , Endoplasmic Reticulum/drug effects , Lymphoma/drug therapy , Prodrugs/pharmacology , Reactive Oxygen Species/metabolism , Animals , Antineoplastic Agents/chemistry , Endoplasmic Reticulum/metabolism , Humans , Lymphoma/metabolism , Mice , Mice, Inbred C57BL , Molecular Structure , Neoplasms, Experimental/drug therapy , Neoplasms, Experimental/metabolism , Prodrugs/chemistry
8.
Leukemia ; 35(8): 2311-2324, 2021 08.
Article in English | MEDLINE | ID: mdl-33526861

ABSTRACT

The transcription factor eomesodermin (EOMES) promotes interleukin (IL)-10 expression in CD4+ T cells, which has been linked to immunosuppressive and cytotoxic activities. We detected cytotoxic, programmed cell death protein-1 (PD-1) and EOMES co-expressing CD4+ T cells in lymph nodes (LNs) of patients with chronic lymphocytic leukemia (CLL) or diffuse large B-cell lymphoma. Transcriptome and flow cytometry analyses revealed that EOMES does not only drive IL-10 expression, but rather controls a unique transcriptional signature in CD4+ T cells, that is enriched in genes typical for T regulatory type 1 (TR1) cells. The TR1 cell identity of these CD4+ T cells was supported by their expression of interferon gamma and IL-10, as well as inhibitory receptors including PD-1. TR1 cells with cytotoxic capacity accumulate also in Eµ-TCL1 mice that develop CLL-like disease. Whereas wild-type CD4+ T cells control TCL1 leukemia development after adoptive transfer in leukopenic Rag2-/- mice, EOMES-deficient CD4+ T cells failed to do so. We further show that TR1 cell-mediated control of TCL1 leukemia requires IL-10 receptor (IL-10R) signaling, as Il10rb-deficient CD4+ T cells showed impaired antileukemia activity. Altogether, our data demonstrate that EOMES is indispensable for the development of IL-10-expressing, cytotoxic TR1 cells, which accumulate in LNs of CLL patients and control TCL1 leukemia in mice in an IL-10R-dependent manner.


Subject(s)
CD4-Positive T-Lymphocytes/immunology , Interleukin-10/metabolism , Leukemia, Lymphocytic, Chronic, B-Cell/prevention & control , T-Box Domain Proteins/metabolism , T-Lymphocytes, Cytotoxic/immunology , T-Lymphocytes, Regulatory/immunology , Th1 Cells/immunology , Animals , Cell Differentiation , Female , Gene Expression Regulation, Leukemic , Humans , Interferon-gamma , Interleukin-10/genetics , Leukemia, Lymphocytic, Chronic, B-Cell/immunology , Leukemia, Lymphocytic, Chronic, B-Cell/metabolism , Leukemia, Lymphocytic, Chronic, B-Cell/pathology , Mice , Mice, Inbred C57BL , Prognosis , Signal Transduction , T-Box Domain Proteins/genetics , Transcriptome , Tumor Cells, Cultured
9.
Cells ; 10(1)2021 01 14.
Article in English | MEDLINE | ID: mdl-33466646

ABSTRACT

NY-ESO-1-specific T cells have shown promising activity in the treatment of soft tissue sarcoma (STS). However, standardized protocols for their generation are limited. Particularly, cost-effectiveness considerations of cell production protocols are of importance for conducting clinical studies. In this study, two different NY-ESO-1-specific T cell production protocols were compared. Major differences between protocols 1 and 2 include culture medium, interleukin-2 and retronectin concentrations, T cell activation strategy, and the transduction process. NY-ESO-1-specific T cells generated according to the two protocols were investigated for differences in cell viability, transduction efficiency, T cell expansion, immunophenotype as well as functionality. NY-ESO-1-specific T cells showed similar viability and transduction efficiency between both protocols. Protocol 1 generated higher absolute numbers of NY-ESO-1-specific T cells. However, there was no difference in absolute numbers of NY-ESO-1-specific T cell subsets with less-differentiated phenotypes accounting for efficient in vivo expansion and engraftment. Furthermore, cells generated according to protocol 1 displayed higher capacity of TNF-α generation, but lower cytotoxic capacities. Overall, both protocols provided functional NY-ESO-1-specific T cells. However, compared to protocol 1, protocol 2 is advantageous in terms of cost-effectiveness. Cell production protocols should be designed diligently to achieve a cost-effective cellular product for further clinical evaluation.


Subject(s)
Antigens, Neoplasm/immunology , Membrane Proteins/immunology , Sarcoma/immunology , T-Lymphocytes, Cytotoxic/immunology , Adoptive Transfer , Cell Culture Techniques , Cell Line , Humans , Sarcoma/therapy , T-Lymphocytes, Cytotoxic/transplantation
11.
Cancers (Basel) ; 14(1)2021 Dec 31.
Article in English | MEDLINE | ID: mdl-35008371

ABSTRACT

Radiotherapy (RT) efficacy can be improved by using radiosensitizers, i.e., drugs enhancing the effect of ionizing radiation (IR). One of the side effects of RT includes damage of normal tissue in close proximity to the treated tumor. This problem can be solved by applying cancer specific radiosensitizers. N-Alkylaminoferrocene-based (NAAF) prodrugs produce reactive oxygen species (ROS) in cancer cells, but not in normal cells. Therefore, they can potentially act as cancer specific radiosensitizers. However, early NAAF prodrugs did not exhibit this property. Since functional mitochondria are important for RT resistance, we assumed that NAAF prodrugs affecting mitochondria in parallel with increasing intracellular ROS can potentially exhibit synergy with RT. We applied sequential Cu+-catalyzed alkyne-azide cycloadditions (CuAAC) to obtain a series of NAAF derivatives with the goal of improving anticancer efficacies over already existing compounds. One of the obtained prodrugs (2c) exhibited high anticancer activity with IC50 values in the range of 5-7.1 µM in human ovarian carcinoma, Burkitt's lymphoma, pancreatic carcinoma and T-cell leukemia cells retained moderate water solubility and showed cancer specificity. 2c strongly affects mitochondria of cancer cells, leading to the amplification of mitochondrial and total ROS production and thus causing cell death via necrosis and apoptosis. We observed that 2c acts as a radiosensitizer in human head and neck squamous carcinoma cells. This is the first demonstration of a synergy between the radiotherapy and NAAF-based ROS amplifiers.

12.
Eur J Haematol ; 106(2): 148-157, 2021 Feb.
Article in English | MEDLINE | ID: mdl-32989806

ABSTRACT

OBJECTIVES: Emerging treatments for relapsed or refractory multiple myeloma (rrMM) have led to increasing options for many patients. This study aimed to assess changes in utilization of these options in Germany with a focus on modern triplet regimens including new agents, such as carfilzomib, ixazomib, elotuzumab and daratumumab, and to evaluate whether this had an impact on rrMM-related outcomes over time. METHODS: The study population consisted of 1255 rrMM patients who were assigned to one of the following 6 treatment groups: immunomodulatory drug (IMiD)-based doublets, proteasome inhibitor (PI)-based doublets, daratumumab monotherapy, PI-IMiD-based triplets, monoclonal antibodies (mAbs)-based triplets, or other treatment. RESULTS: Use of triplet-based therapy regimens increased from 5.9% in 2014 to 31.4% in 2017. In parallel, use of IMiD-based doublets decreased from 74.3% in 2014 to 37.6% in 2017. Over the same time period, the risk of death decreased by 32% and the risk of hospitalization which was reduced by 30%. The risk for serious adverse events remained unchanged. CONCLUSIONS: Between 2014 and 2017, the use of triplet-based therapy regimens for rrMM in Germany has significantly increased and this was associated with a significant decline in deaths and hospitalizations without an increased incidence of serious adverse events.


Subject(s)
Multiple Myeloma/mortality , Multiple Myeloma/therapy , Age Factors , Aged , Aged, 80 and over , Combined Modality Therapy , Comorbidity , Databases, Factual , Disease Management , Drug Resistance, Neoplasm , Female , Germany/epidemiology , Humans , Male , Middle Aged , Multiple Myeloma/diagnosis , Multiple Myeloma/epidemiology , Neoplasm Staging , Odds Ratio , Outcome Assessment, Health Care , Recurrence , Retrospective Studies
13.
Int J Cancer ; 148(2): 419-428, 2021 01 15.
Article in English | MEDLINE | ID: mdl-32683672

ABSTRACT

Chimeric antigen receptor T (CART) cells targeting CD19 have shown promising results in the treatment of chronic lymphocytic leukemia (CLL). However, efficacy seems to be inferior compared to diffuse large B-cell lymphoma or acute lymphoblastic leukemia. Impaired T-cell fitness of CLL patients may be involved in treatment failure. Less-differentiated naïve-like T cells play an important role in CART expansion and long-term persistence in vivo. These cells are sparse in CLL patients. Therefore, optimization of CART cell production protocols enriching less differentiated T cell subsets may overcome treatment resistance. The B-cell receptor inhibitor ibrutinib targeting Bruton's tyrosine kinase (BTK) is approved for the treatment of CLL. Besides BTK, ibrutinib additionally inhibits interleukin-2-inducible T-cell kinase (ITK) which is involved in T-cell differentiation. To evaluate the effect of ibrutinib on CART cell production, peripheral blood mononuclear cells from nine healthy donors and eight CLL patients were used to generate CART cells. T-cell expansion and phenotype, expression of homing and exhaustion makers as well as functionality of CART cells were evaluated. CART cell generation in the presence of ibrutinib resulted in increased cell viability and expansion of CLL patient-derived CART cells. Furthermore, ibrutinib enriched CART cells with less-differentiated naïve-like phenotype and decreased expression of exhaustion markers including PD-1, TIM-3 and LAG-3. In addition, ibrutinib increased the cytokine release capacity of CLL patient-derived CART cells. In summary, BTK/ITK inhibition with ibrutinib during CART cell culture can improve yield and function of CLL patient-derived CART cell products.


Subject(s)
Adenine/analogs & derivatives , Immunotherapy, Adoptive/methods , Leukemia, Lymphocytic, Chronic, B-Cell/therapy , Piperidines/pharmacology , Receptors, Antigen, T-Cell/biosynthesis , Receptors, Antigen, T-Cell/immunology , Receptors, Chimeric Antigen/immunology , T-Lymphocyte Subsets/drug effects , Adenine/pharmacology , Antigens, CD19/immunology , CD4-Positive T-Lymphocytes/cytology , CD4-Positive T-Lymphocytes/drug effects , CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/cytology , CD8-Positive T-Lymphocytes/drug effects , CD8-Positive T-Lymphocytes/immunology , Case-Control Studies , Cell Culture Techniques , Culture Media , Cytokines/biosynthesis , HEK293 Cells , Humans , K562 Cells , Leukemia, Lymphocytic, Chronic, B-Cell/immunology , T-Lymphocyte Subsets/cytology , T-Lymphocyte Subsets/immunology
14.
Front Immunol ; 11: 608167, 2020.
Article in English | MEDLINE | ID: mdl-33362794

ABSTRACT

Chimeric antigen receptor (CAR) T cell therapy has shown promising responses in patients with refractory or relapsed aggressive B-cell malignancies that are resistant to conventional chemotherapy or stem cell transplantation. A potentially combinatorial therapeutic strategy may be the inhibition of anti-apoptotic Bcl-2 family proteins, overexpressed in most cancer cells. In this study we investigated the combination of 3rd-generation CD19.CAR-T cells and the BH3 mimetics venetoclax, a Bcl-2 inhibitor, or S63845, a Mcl-1 inhibitor, under three different treatment conditions: pre-sensitization of cancer cells with BH3 mimetics followed by CAR-T cell treatment, simultaneous combination therapy, and the administration of BH3 mimetics after CAR-T cell treatment. Our results showed that administration of CAR-T cells and BH3 mimetics had a significant effect on the quantity and quality of CD19.CAR-T cells. The administration of BH3 mimetics prior to CAR-T cell therapy exerted an enhanced cytotoxic efficacy by upregulating the CD19 expression and pro-apoptotic proteins in highly sensitive tumor cells, and thereby improving both CD19.CAR-T cell cytotoxicity and persistence. In simultaneous and post-treatment approaches, however, the quantity of CAR-T cells was adversely affected. Our findings indicate pre-sensitization of highly sensitive tumor cells with BH3 mimetics could enhance the cytotoxic efficacy of CAR-T cell treatment.


Subject(s)
Antineoplastic Agents/pharmacology , B-Lymphocytes/drug effects , Bridged Bicyclo Compounds, Heterocyclic/pharmacology , Immunotherapy, Adoptive , Leukemia/therapy , Lymphoma/therapy , Receptors, Chimeric Antigen/genetics , Sulfonamides/pharmacology , T-Lymphocytes/transplantation , Apoptosis/drug effects , Apoptosis Regulatory Proteins/genetics , Apoptosis Regulatory Proteins/metabolism , B-Lymphocytes/immunology , B-Lymphocytes/metabolism , Cell Survival/drug effects , Coculture Techniques , Combined Modality Therapy , Gene Expression Regulation, Leukemic , Humans , K562 Cells , Leukemia/immunology , Leukemia/metabolism , Leukemia/pathology , Lymphoma/immunology , Lymphoma/metabolism , Lymphoma/pathology , Receptors, Chimeric Antigen/metabolism , T-Lymphocytes/immunology , T-Lymphocytes/metabolism
15.
Eur J Health Econ ; 21(9): 1351-1361, 2020 Dec.
Article in English | MEDLINE | ID: mdl-32654072

ABSTRACT

BACKGROUND: In Germany, several triplet therapies for treating relapsed or refractory multiple myeloma (rrMM) patients have recently been approved. While most of them are administered intravenously, ixazomib-based combination is the only orally bioavailable regimen. OBJECTIVE: To conduct a 1-year and 3-year budget impact analysis (BIA) of different novel triplets to treat patients with rrMM in second or subsequent therapy lines accounting for costs covered by German statutory health insurance (SHI). METHODS: A 3-state partitioned survival model (PSM) was developed to evaluate the budget impact of the following regimens: carfilzomib plus lenalidomide plus dexamethasone (KRd), elotuzumab plus lenalidomide plus dexamethasone (ERd), daratumumab plus lenalidomide plus dexamethasone (DRd), and ixazomib plus lenalidomide plus dexamethasone (IRd). The analysis included direct medical costs such as drug acquisition, comedication and preparation for parenteral solutions, drug administration and other 1-time costs, adverse event management costs and direct non-medical costs, such as transportation costs. RESULTS: Based on current drug market shares in German healthcare market, the estimated costs after 1 year of treatment was €551 million (KRd), €163 million (ERd), €584 million (DRd), and €95 million (IRd). The total budget impact of €1393 million is mainly driven by drug acquisition and subsequent therapy costs. CONCLUSION: Among the regimens of interest, the oral-based therapy regimens offered cost advantages over intravenous-based therapy regimens. The higher overall costs of intravenous therapy regimens were attributed primarily to higher drug acquisition costs.


Subject(s)
Antineoplastic Agents , Multiple Myeloma , Administration, Intravenous , Administration, Oral , Antineoplastic Agents/administration & dosage , Antineoplastic Agents/economics , Antineoplastic Combined Chemotherapy Protocols , Dexamethasone/therapeutic use , Germany , Humans , Multiple Myeloma/drug therapy , Multiple Myeloma/economics , Recurrence
16.
Leukemia ; 34(11): 2934-2950, 2020 11.
Article in English | MEDLINE | ID: mdl-32404973

ABSTRACT

Drug combinations that target critical pathways are a mainstay of cancer care. To improve current approaches to combination treatment of chronic lymphocytic leukemia (CLL) and gain insights into the underlying biology, we studied the effect of 352 drug combination pairs in multiple concentrations by analysing ex vivo drug response of 52 primary CLL samples, which were characterized by "omics" profiling. Known synergistic interactions were confirmed for B-cell receptor (BCR) inhibitors with Bcl-2 inhibitors and with chemotherapeutic drugs, suggesting that this approach can identify clinically useful combinations. Moreover, we uncovered synergistic interactions between BCR inhibitors and afatinib, which we attribute to BCR activation by afatinib through BLK upstream of BTK and PI3K. Combinations of multiple inhibitors of BCR components (e.g., BTK, PI3K, SYK) had effects similar to the single agents. While PI3K and BTK inhibitors produced overall similar effects in combinations with other drugs, we uncovered a larger response heterogeneity of combinations including PI3K inhibitors, predominantly in CLL with mutated IGHV, which we attribute to the target's position within the BCR-signaling pathway. Taken together, our study shows that drug combination effects can be effectively queried in primary cancer cells, which could aid discovery, triage and clinical development of drug combinations.


Subject(s)
Antineoplastic Agents/pharmacology , Drug Evaluation, Preclinical , Drug Resistance, Neoplasm/genetics , Leukemia, Lymphocytic, Chronic, B-Cell/genetics , Antineoplastic Agents/administration & dosage , Antineoplastic Agents/adverse effects , Antineoplastic Combined Chemotherapy Protocols/adverse effects , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Biomarkers, Tumor , Cell Line, Tumor , Dose-Response Relationship, Drug , Drug Evaluation, Preclinical/methods , Drug Evaluation, Preclinical/standards , Drug Synergism , High-Throughput Nucleotide Sequencing/methods , High-Throughput Nucleotide Sequencing/standards , Humans , Leukemia, Lymphocytic, Chronic, B-Cell/diagnosis , Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy , Primary Cell Culture , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , Proto-Oncogene Proteins c-bcl-2/antagonists & inhibitors , Proto-Oncogene Proteins c-bcl-2/genetics , Proto-Oncogene Proteins c-bcl-2/metabolism , Receptors, Antigen, B-Cell/antagonists & inhibitors , Receptors, Antigen, B-Cell/genetics , Receptors, Antigen, B-Cell/metabolism , Reproducibility of Results
18.
Int J Cancer ; 147(8): 2029-2041, 2020 10 15.
Article in English | MEDLINE | ID: mdl-32270481

ABSTRACT

Despite major advances in the treatment of multiple myeloma (MM), it remains a largely incurable disease with long-term control often dependent on continuous therapy. More effective, better tolerated treatments are therefore required to achieve durable remissions and to improve the quality of life of MM patients. Adoptive immunotherapy employing T cells expressing chimeric antigen receptors (CAR) is currently among the most promising treatment approaches in cancer. Within the target portfolio for MM immunotherapy, B-cell maturation antigen (BCMA) is among the most widely studied target antigens. BCMA is consistently expressed on MM cells and, importantly, is not expressed in critical healthy tissue. For this reason, it is an ideal target for MM immunotherapy. Several clinical trials evaluating different BCMA-targeting CAR constructs have been initiated and early results are very promising. However, in this rapidly developing clinical landscape, the ultimate role of BCMA-specific CAR-T cell therapy remains unclear. In this review, we will summarize currently available clinical data on BCMA-directed CAR-T cells and discuss potential future perspective for this promising treatment approach in MM.


Subject(s)
B-Cell Maturation Antigen/immunology , B-Lymphocytes/immunology , Multiple Myeloma/immunology , Receptors, Chimeric Antigen/immunology , T-Lymphocytes/immunology , Animals , Humans , Immunotherapy/methods
19.
Int J Mol Sci ; 20(24)2019 Dec 10.
Article in English | MEDLINE | ID: mdl-31835562

ABSTRACT

Chimeric antigen receptor (CAR) T cell therapy can achieve outstanding response rates in heavily pretreated patients with hematological malignancies. However, relapses occur and they limit the efficacy of this promising treatment approach. The cellular composition and immunophenotype of the administered CART cells play a crucial role for therapeutic success. Less differentiated CART cells are associated with improved expansion, long-term in vivo persistence, and prolonged anti-tumor control. Furthermore, the ratio between CD4+ and CD8+ T cells has an effect on the anti-tumor activity of CART cells. The composition of the final cell product is not only influenced by the CART cell construct, but also by the culturing conditions during ex vivo T cell expansion. This includes different T cell activation strategies, cytokine supplementation, and specific pathway inhibition for the differentiation blockade. The optimal production process is not yet defined. In this review, we will discuss the use of different CART cell production strategies and the molecular background for the generation of improved CART cells in detail.


Subject(s)
Immunotherapy, Adoptive/methods , Neoplasms/therapy , Receptors, Chimeric Antigen/metabolism , CD4-Positive T-Lymphocytes/metabolism , CD8-Positive T-Lymphocytes/metabolism , Humans , Neoplasms/immunology , Receptors, Antigen, T-Cell/metabolism
20.
Cancer Immunol Immunother ; 68(7): 1195-1209, 2019 Jul.
Article in English | MEDLINE | ID: mdl-31177329

ABSTRACT

The anti-tumor efficacy of TCR-engineered T cells in vivo depends largely on less-differentiated subsets such as T cells with naïve-like T cell (TN) phenotypes with greater expansion and long-term persistence. To increase these subsets, we compared the generation of New York esophageal squamous cell carcinoma-1 (NY-ESO-1)-specific T cells under supplementation with either IL-2 or IL-7/IL-15. PBMCs were transduced with MS3II-NY-ESO-1-siTCR retroviral vector. T cell generation was adapted from a CD19-specific CART cell production protocol. Comparable results in viability, expansion and transduction efficiency of T cells under stimulation with either IL-2 or IL-7/IL-15 were observed. IL-7/IL-15 led to an increase of CD4+ T cells and a decrease of CD8+ T cells, enriched the amount of TN among CD4+ T cells but not among CD8+ T cells. In a 51Cr release assay, similar specific lysis of NY-ESO-1-positive SW982 sarcoma cells was achieved. However, intracellular cytokine staining revealed a significantly increased production of IFN-γ and TNF-α in T cells generated by IL-2 stimulation. To validate these unexpected findings, NY-ESO-1-specific T cell production was evaluated in another protocol originally established for TCR-engineered T cells. IL-7/IL-15 increased the proportion of TN. However, the absolute number of TN did not increase due to a significantly slower expansion of T cells with IL-7/IL-15. In conclusion, IL-7/IL-15 does not seem to be superior to IL-2 for the generation of NY-ESO-1-specific T cells. This is in sharp contrast to the observations in CD19-specific CART cells. Changes of cytokine cocktails should be carefully evaluated for individual vector systems.


Subject(s)
Antigens, Neoplasm/metabolism , Cell Engineering/methods , Immunotherapy, Adoptive/methods , Membrane Proteins/metabolism , Neoplasms/therapy , Receptors, Chimeric Antigen/immunology , Antigens, CD19/metabolism , Antigens, Neoplasm/immunology , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/metabolism , CD4-Positive T-Lymphocytes/transplantation , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , CD8-Positive T-Lymphocytes/transplantation , Cell Culture Techniques/methods , Cell Line, Tumor , Culture Media , Humans , Interleukin-15/immunology , Interleukin-2/immunology , Interleukin-7/immunology , Membrane Proteins/immunology , Neoplasms/immunology , Receptors, Chimeric Antigen/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...