Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Nanoscale ; 15(42): 16967-16975, 2023 Nov 02.
Article in English | MEDLINE | ID: mdl-37823858

ABSTRACT

Nature forms structurally complex materials with a large variation of mechanical and physical properties from only very few organic compounds and minerals. Nanocomposites made from TiO2 and carboxylic-acids, two substances that are available to nature as well as materials engineers, can be seen as representative of a huge class of natural and bio-inspired materials. The hybrid interfaces between the two components are thought to determine the overall properties of the composite. Yet, little is known about the atomistic processes at those interfaces under load and their failure mechanisms. The present work models the stress-strain curves of TiO2/carboxylic-acid interfaces in the slow deformation limit for different facets and binding modes, employing density functional theory calculations. Contrary to former hypotheses, the interface rarely fails through a de-bonding of the molecule, but rather through a surface failure mechanism. Furthermore, a stress-release mechanism is discovered for the bi-dentate binding mode on the {101} facet. Deriving mechanical properties, such as the interface strength, strain at interface failure, and the elastic modulus, allows a comparison with experimental results. The calculated strengths and elastic moduli already agree qualitatively with properties of nanocomposites, despite the simplifications in the model consisting of periodic sandwich structures. The results presented here will help to improve these materials and can be directly integrated in multi-scale simulations, in order to reach a more accurate quantitative description.

2.
J Phys Condens Matter ; 34(16)2022 Feb 22.
Article in English | MEDLINE | ID: mdl-35051906

ABSTRACT

We report on differences in the magnetite (111) surface structure when prepared under oxidizing and reducing conditions. Both preparations were done under UHV conditions at elevated temperatures, but in one case the sample was cooled down while keeping it in an oxygen atmosphere. Scanning tunneling microscopy after each of the preparations showed a different apparent morphology, which is discussed to be an electronic effect and which is reflected in the necessity of using opposite bias tunneling voltages in order to obtain good images. Surface x-ray diffraction revealed that both preparations lead to Fe vacancies, leading to local O-terminations, the relative fraction of which depending on the preparation. The preparation under reducing conditions lead to a larger fraction of Fe-termination. The geometric structure of the two different terminations was found to be identical for both treatments, even though the surface and near-surface regions exhibit small compositional differences; after the oxidizing treatment they are iron deficient. Further evidence for the dependence of iron vs oxygen fractional surface terminations on preparation conditions comes from Fourier transform infrared reflection-absorption spectroscopy, which is used to study the adsorption of formic acid. These molecules dissociate and adsorb in chelating and bidentate bridging geometries on the Fe-terminated areas and the signal of typical infrared absorption bands is stronger after the preparation under reducing conditions, which results in a higher fraction of Fe-termination. The adsorption of formic acid induced an atomic roughening of the magnetite (111) surface which we conclude from the quantitative analysis of the crystal truncation rod data. The roughening process is initiated by atomic hydrogen, which results from the dissociation of formic acid after its adsorption on the surface. Atomic hydrogen adsorbs at surface oxygen and after recombination with another H this surface hydroxyl can form H2O, which may desorb from the surface, while iron ions diffuse into interstitial sites in the bulk.

3.
J Phys Chem Lett ; 12(15): 3847-3852, 2021 Apr 22.
Article in English | MEDLINE | ID: mdl-33852797

ABSTRACT

We report a novel heterogeneous adsorption mechanism of formic acid on the magnetite (111) surface. Our experimental results and density functional theory (DFT) calculations give evidence for dissociative adsorption of formic acid in quasibidentate and chelating geometries. The latter is induced by the presence of iron vacancies at the surface, making oxygen atoms accessible for hydrogen atoms from dissociated formic acid. DFT calculations predict that both adsorption geometries are energetically favorable under our experimental conditions. The calculations prove that the locally observed (√3 × âˆš3)R 30° superstructure consists of three formate molecules in a triangular arrangement, adsorbed predominantly in a chelating geometry. The results show how defects can stabilize alternative adsorption geometries, which is a crucial ingredient for a detailed atomistic understanding of reaction barriers on magnetite and other oxide surfaces, as well as for the stability of carboxylic acid based nanocomposite materials.

SELECTION OF CITATIONS
SEARCH DETAIL
...