Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
bioRxiv ; 2024 Jan 27.
Article in English | MEDLINE | ID: mdl-38328123

ABSTRACT

With the increasing prevalence of antimicrobial-resistant bacterial infections, there is great interest in using lytic bacteriophages (phages) to treat such infections. However, the factors that govern bacteriophage pharmacokinetics in vivo remain poorly understood. Here, we have examined the contribution of neutrophils, the most abundant phagocytes in the body, to the pharmacokinetics of intravenously administered bacteriophage in uninfected mice. A single dose of LPS-5, an antipseudomonal bacteriophage recently used in human clinical trials, was administered intravenously to both wild-type BALB/c and neutropenic ICR mice. Phage concentrations were assessed in peripheral blood and spleen at 0.5, 1, 2, 4, 8, 12, and 24 hours after administration by plaque assay and qPCR. We observed that the phage clearance is only minimally affected by neutropenia. Indeed, the half-life of phages in blood in BALB/c and ICR mice is 3.45 and 3.66 hours, respectively. These data suggest that neutrophil-mediated phagocytosis is not a major determinant of phage clearance. Conversely, we observed a substantial discrepancy in circulating phage levels over time when measured by qPCR versus plaque assay, suggesting that substantial functional inactivation of circulating phages occurs over time. These data indicate that circulating factors, but not neutrophils, inactivate intravenously administered phages.

2.
Nat Commun ; 10(1): 5527, 2019 12 04.
Article in English | MEDLINE | ID: mdl-31797934

ABSTRACT

Tailoring interfaces with polymer brushes is a commonly used strategy to create functional materials for numerous applications. Existing methods are limited in brush thickness, the ability to generate high-density brushes of biopolymers, and the potential for regeneration. Here we introduce a scheme to synthesize ultra-thick regenerating hyaluronan polymer brushes using hyaluronan synthase. The platform provides a dynamic interface with tunable brush heights that extend up to 20 microns - two orders of magnitude thicker than standard brushes. The brushes are easily sculpted into micropatterned landscapes by photo-deactivation of the enzyme. Further, they provide a continuous source of megadalton hyaluronan or they can be covalently-stabilized to the surface. Stabilized brushes exhibit superb resistance to biofilms, yet are locally digested by fibroblasts. This brush technology provides opportunities in a range of arenas including regenerating tailorable biointerfaces for implants, wound healing or lubrication as well as fundamental studies of the glycocalyx and polymer physics.

SELECTION OF CITATIONS
SEARCH DETAIL
...