Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Biol Chem ; 294(23): 9198-9212, 2019 06 07.
Article in English | MEDLINE | ID: mdl-30971427

ABSTRACT

Adoptive transfer of tumor epitope-reactive T cells has emerged as a promising strategy to control tumor growth. However, chronically-stimulated T cells expanded for adoptive cell transfer are susceptible to cell death in an oxidative tumor microenvironment. Because oxidation of cell-surface thiols also alters protein functionality, we hypothesized that increasing the levels of thioredoxin (Trx), an antioxidant molecule facilitating reduction of proteins through cysteine thiol-disulfide exchange, in T cells will promote their sustained antitumor function. Using pre-melanosome protein (Pmel)-Trx1 transgenic mouse-derived splenic T cells, flow cytometry, and gene expression analysis, we observed here that higher Trx expression inversely correlated with reactive oxygen species and susceptibility to T-cell receptor restimulation or oxidation-mediated cell death. These Trx1-overexpressing T cells exhibited a cluster of differentiation 62Lhi (CD62Lhi) central memory-like phenotype with reduced glucose uptake (2-NBDGlo) and decreased effector function (interferon γlo). Furthermore, culturing tumor-reactive T cells in the presence of recombinant Trx increased the dependence of T cells on mitochondrial metabolism and improved tumor control. We conclude that strategies for increasing the antioxidant capacity of antitumor T cells modulate their immunometabolic phenotype leading to improved immunotherapeutic control of established tumors.


Subject(s)
T-Lymphocytes/metabolism , Thioredoxins/metabolism , Animals , Antioxidants/metabolism , Cell Line, Tumor , Glucose Transporter Type 1/metabolism , L-Selectin/metabolism , Mice , Mice, Inbred C57BL , Mice, Transgenic , Mitochondria/metabolism , Oxidative Stress , Phenotype , Reactive Oxygen Species/metabolism , Receptors, Antigen, T-Cell/metabolism , Recombinant Proteins/biosynthesis , Recombinant Proteins/genetics , T-Lymphocytes/cytology , T-Lymphocytes/immunology , Thioredoxins/genetics , Tumor Microenvironment , gp100 Melanoma Antigen/genetics , gp100 Melanoma Antigen/metabolism
2.
EMBO Mol Med ; 5(1): 105-21, 2013 01.
Article in English | MEDLINE | ID: mdl-23180565

ABSTRACT

Mechanisms that alter protein phosphatase 2A (PP2A)-dependent lung tumour suppression via the I2PP2A/SET oncoprotein are unknown. We show here that the tumour suppressor ceramide binds I2PP2A/SET selectively in the nucleus and including its K209 and Y122 residues as determined by molecular modelling/simulations and site-directed mutagenesis. Because I2PP2A/SET was found overexpressed, whereas ceramide was downregulated in lung tumours, a sphingolipid analogue drug, FTY720, was identified to mimick ceramide for binding and targeting I2PP2A/SET, leading to PP2A reactivation, lung cancer cell death, and tumour suppression in vivo. Accordingly, while molecular targeting of I2PP2A/SET by stable knockdown prevented further tumour suppression by FTY720, reconstitution of WT-I2PP2A/SET expression restored this process. Mechanistically, targeting I2PP2A/SET by FTY720 mediated PP2A/RIPK1-dependent programmed necrosis (necroptosis), but not by apoptosis. The RIPK1 inhibitor necrostatin and knockdown or genetic loss of RIPK1 prevented growth inhibition by FTY720. Expression of WT- or death-domain-deleted (DDD)-RIPK1, but not the kinase-domain-deleted (KDD)-RIPK1, restored FTY720-mediated necroptosis in RIPK1(-/-) MEFs. Thus, these data suggest that targeting I2PP2A/SET by FTY720 suppresses lung tumour growth, at least in part, via PP2A activation and necroptosis mediated by the kinase domain of RIPK1.


Subject(s)
Antineoplastic Agents/pharmacology , Histone Chaperones/antagonists & inhibitors , Lung Neoplasms/drug therapy , Lung Neoplasms/metabolism , Propylene Glycols/pharmacology , Protein Phosphatase 2/metabolism , Receptor-Interacting Protein Serine-Threonine Kinases/metabolism , Sphingosine/analogs & derivatives , Transcription Factors/antagonists & inhibitors , Animals , Cell Line, Tumor , DNA-Binding Proteins , Fingolimod Hydrochloride , Gene Knockdown Techniques , Histone Chaperones/chemistry , Histone Chaperones/genetics , Histone Chaperones/metabolism , Humans , Lung Neoplasms/pathology , Mice , Mice, SCID , Models, Molecular , Necrosis , Phosphorylation , Propylene Glycols/metabolism , Receptor-Interacting Protein Serine-Threonine Kinases/antagonists & inhibitors , Receptor-Interacting Protein Serine-Threonine Kinases/genetics , Sphingosine/metabolism , Sphingosine/pharmacology , Transcription Factors/chemistry , Transcription Factors/genetics , Transcription Factors/metabolism , Xenograft Model Antitumor Assays
SELECTION OF CITATIONS
SEARCH DETAIL
...