Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Bioresour Technol ; 351: 127038, 2022 May.
Article in English | MEDLINE | ID: mdl-35331886

ABSTRACT

Microalgae as an alternative feedstock for sustainable bio-products have gained significant interest over years. Even though scientific productivity related to microalgae-based research has increased in recent decades, translation to industrial scale is still lacking. Therefore, it is essential to understand the current state-of-art and, identify research gaps and hotspots driving industrial scale up. The present review through scientometric analysis attempted to delineate the research evolution contributing to this emerging field. The research trends were analysed over the last decade globally highlighting the collaborative network between the countries. The comprehensive knowledge map generated confirmed microalgal biorefinery as a scientifically active field, where the present research interest is focussed on synergistically integrating the unit processes involved to make it enviro-economically feasible. Market opportunities and regulatory policy requirements along with the consensus need to adopt circular bio-economy perspectives were highlighted to facilitate real-time implementation of microalgal biorefinery.


Subject(s)
Microalgae , Biofuels , Biomass , Industry , Technology
2.
Chemosphere ; 286(Pt 1): 131631, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34315073

ABSTRACT

Conventional thermochemical conversion techniques for biofuel production from lignocellulosic biomass is often non-selective and energy inefficient. Microwave assisted pyrolysis (MAP) is cost and energy-efficient technology aimed for value-added bioproducts recovery from biomass with less environmental impacts. The present review emphasizes the performance of MAP in terms of product yield, characteristics and energy consumption and further it compares it with conventional pyrolysis. The significant role of biochar as catalyst in microwave pyrolysis for enhancing the product selectivity and quality, and the influence of microwave activation on product composition identified through sophisticated techniques has been highlighted. Besides, the application of MAP based biochar as soil conditioner and heavy metal immobilization has been illustrated. MAP accomplished at low temperature creates uniform thermal gradient than conventional mode, thereby producing engineered char with hotspots that could be used as catalysts for gasification, energy storage, etc. The stability, nutrient content, surface properties and adsorption capacity of biochar was enhanced by microwave activation, thus facilitating its use as soil conditioner. Many reviews until now on MAP mostly dealt with operational conditions and product yield with limited focus on comparative energy consumption with conventional mode, analytical techniques for product characterization and end application especially concerning agriculture. Thus, the present review adds on to the current state of art on microwave assisted pyrolysis covering all-round aspects of production followed by characterization and applications as soil amendment for increasing crop productivity in addition to the production of value-added chemicals, thus promoting process sustainability in energy and environment nexus.


Subject(s)
Charcoal , Microwaves , Biomass , Pyrolysis , Soil
3.
Bioresour Technol ; 310: 123392, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32339890

ABSTRACT

This study evaluates the use of engineered biochar as a heterogeneous solid acid catalyst for transesterification of algal oil derived from a native microalgal consortium. Biochar derived from sugarcane bagasse, coconut shell, corncob and peanut shell were evaluated for catalytic activity following surface modification. Peanut shell pyrolyzed at 400 °C with the sulfonic acid density of 0.837 mmol/g having 6.616 m2/g surface area was selected for efficient catalysis. The efficiency of transesterification was evaluated with 1-7 wt% catalyst loading, methanol: oil ratio of 6:1 to 30:1 at 55-85 °C over 2-8 h. Biodiesel yield of 94.91% was obtained with 5 wt% catalyst loading, MeOH: oil ratio of 20:1 at 65 °C after 4 h. Spectral analysis of algal biodiesel showed the presence of functional groups corresponding to esters. GC-MS analysis revealed the prominent presence of palmitic and oleic acids, further advocating the suitability of the technology for commercial application.


Subject(s)
Biofuels , Charcoal , Catalysis , Esterification , Plant Oils
SELECTION OF CITATIONS
SEARCH DETAIL
...