Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 25
Filter
1.
Malar J ; 23(1): 86, 2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38532415

ABSTRACT

BACKGROUND: The degree to which Anopheles mosquitoes prefer biting humans over other vertebrate hosts, i.e. the human blood index (HBI), is a crucial parameter for assessing malaria transmission risk. However, existing techniques for identifying mosquito blood meals are demanding in terms of time and effort, involve costly reagents, and are prone to inaccuracies due to factors such as cross-reactivity with other antigens or partially digested blood meals in the mosquito gut. This study demonstrates the first field application of mid-infrared spectroscopy and machine learning (MIRS-ML), to rapidly assess the blood-feeding histories of malaria vectors, with direct comparison to PCR assays. METHODS AND RESULTS: Female Anopheles funestus mosquitoes (N = 1854) were collected from rural Tanzania and desiccated then scanned with an attenuated total reflectance Fourier-transform Infrared (ATR-FTIR) spectrometer. Blood meals were confirmed by PCR, establishing the 'ground truth' for machine learning algorithms. Logistic regression and multi-layer perceptron classifiers were employed to identify blood meal sources, achieving accuracies of 88%-90%, respectively, as well as HBI estimates aligning well with the PCR-based standard HBI. CONCLUSIONS: This research provides evidence of MIRS-ML effectiveness in classifying blood meals in wild Anopheles funestus, as a potential complementary surveillance tool in settings where conventional molecular techniques are impractical. The cost-effectiveness, simplicity, and scalability of MIRS-ML, along with its generalizability, outweigh minor gaps in HBI estimation. Since this approach has already been demonstrated for measuring other entomological and parasitological indicators of malaria, the validation in this study broadens its range of use cases, positioning it as an integrated system for estimating pathogen transmission risk and evaluating the impact of interventions.


Subject(s)
Anopheles , Malaria , Animals , Humans , Female , Mosquito Vectors , Malaria/epidemiology , Machine Learning , Spectrophotometry, Infrared , Feeding Behavior
2.
Sci Rep ; 14(1): 1002, 2024 01 10.
Article in English | MEDLINE | ID: mdl-38200070

ABSTRACT

Effective larviciding for malaria control requires detailed studies of larvicide efficacies, aquatic habitat characteristics, and life history traits of target vectors. Mosquitoes with brief larval phases present narrower timeframes for biolarvicidal effects than mosquitoes with extended periods. We evaluated two biolarvicides, VectoBac (Bacillus thuringiensis israelensis (Bti)) and VectoMax (Bti and Bacillus sphaericus) against Anopheles funestus and Anopheles arabiensis in shaded and unshaded habitats; and explored how larval development might influence retreatment intervals. These tests were done in semi-natural habitats using field-collected larvae, with untreated habitats as controls. Additionally, larval development was assessed in semi-natural and natural habitats in rural Tanzania, by sampling daily and recording larval developmental stages. Both biolarvicides reduced larval densities of both species by >98% within 72 h. Efficacy lasted one week in sun-exposed habitats but remained >50% for two weeks in shaded habitats. An. funestus spent up to two weeks before pupating (13.2(10.4-16.0) days in semi-natural; 10.0(6.6-13.5) in natural habitats), while An. arabiensis required slightly over one week (8.2 (5.8-10.6) days in semi-natural; 8.3 (5.0-11.6) in natural habitats). The findings suggest that weekly larviciding, which is essential for An. arabiensis might be more effective for An. funestus whose prolonged aquatic growth allows for repeated exposures. Additionally, the longer residual effect of biolarvicides in shaded habitats indicates they may require less frequent treatments compared to sun-exposed areas.


Subject(s)
Anopheles , Bacillus thuringiensis , Malaria , Animals , Larva , Malaria/prevention & control , Mosquito Vectors , Retreatment
3.
Geohealth ; 7(12): e2023GH000868, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38089068

ABSTRACT

A combination of accelerated population growth and severe droughts has created pressure on food security and driven the development of irrigation schemes across sub-Saharan Africa. Irrigation has been associated with increased malaria risk, but risk prediction remains difficult due to the heterogeneity of irrigation and the environment. While investigating transmission dynamics is helpful, malaria models cannot be applied directly in irrigated regions as they typically rely only on rainfall as a source of water to quantify larval habitats. By coupling a hydrologic model with an agent-based malaria model for a sugarcane plantation site in Arjo, Ethiopia, we demonstrated how incorporating hydrologic processes to estimate larval habitats can affect malaria transmission. Using the coupled model, we then examined the impact of an existing irrigation scheme on malaria transmission dynamics. The inclusion of hydrologic processes increased the variability of larval habitat area by around two-fold and resulted in reduction in malaria transmission by 60%. In addition, irrigation increased all habitat types in the dry season by up to 7.4 times. It converted temporary and semi-permanent habitats to permanent habitats during the rainy season, which grew by about 24%. Consequently, malaria transmission was sustained all-year round and intensified during the main transmission season, with the peak shifted forward by around 1 month. Lastly, we evaluated the spatiotemporal distribution of adult vectors under the effect of irrigation by resolving habitat heterogeneity. These findings could help larval source management by identifying transmission hotspots and prioritizing resources for malaria elimination planning.

4.
Parasit Vectors ; 16(1): 408, 2023 Nov 07.
Article in English | MEDLINE | ID: mdl-37936155

ABSTRACT

BACKGROUND: Malaria transmission in Africa is facilitated by multiple species of Anopheles mosquitoes. These vectors have different behaviors and vectorial capacities and are affected differently by vector control interventions, such as insecticide-treated nets and indoor residual spraying. This review aimed to assess changes in the contribution of different vector species to malaria transmission in east and southern Africa over 20 years of widespread insecticide-based vector control. METHODS: We searched PubMed, Global Health, and Web of Science online databases for articles published between January 2000 and April 2023 that provided species-specific sporozoite rates for different malaria vectors in east and southern Africa. We extracted data on study characteristics, biting rates, sporozoite infection proportions, and entomological inoculation rates (EIR). Using EIR data, the proportional contribution of each species to malaria transmission was estimated. RESULTS: Studies conducted between 2000 and 2010 identified the Anopheles gambiae complex as the primary malaria vector, while studies conducted from 2011 to 2021 indicated the dominance of Anopheles funestus. From 2000 to 2010, in 57% of sites, An. gambiae demonstrated higher parasite infection prevalence than other Anopheles species. Anopheles gambiae also accounted for over 50% of EIR in 76% of the study sites. Conversely, from 2011 to 2021, An. funestus dominated with higher infection rates than other Anopheles in 58% of sites and a majority EIR contribution in 63% of sites. This trend coincided with a decline in overall EIR and the proportion of sporozoite-infected An. gambiae. The main vectors in the An. gambiae complex in the region were Anopheles arabiensis and An. gambiae sensu stricto (s.s.), while the important member of the An. funestus group was An. funestus s.s. CONCLUSION: The contribution of different vector species in malaria transmission has changed over the past 20 years. As the role of An. gambiae has declined, An. funestus now appears to be dominant in most settings in east and southern Africa. Other secondary vector species may play minor roles in specific localities. To improve malaria control in the region, vector control should be optimized to match these entomological trends, considering the different ecologies and behaviors of the dominant vector species.


Subject(s)
Anopheles , Insecticides , Malaria, Falciparum , Malaria , Animals , Malaria/epidemiology , Malaria/prevention & control , Anopheles/parasitology , Malaria, Falciparum/parasitology , Insect Vectors/parasitology , Mosquito Vectors/parasitology , Feeding Behavior , Africa, Southern/epidemiology , Sporozoites
5.
BMC Bioinformatics ; 24(1): 11, 2023 Jan 09.
Article in English | MEDLINE | ID: mdl-36624386

ABSTRACT

BACKGROUND: Old mosquitoes are more likely to transmit malaria than young ones. Therefore, accurate prediction of mosquito population age can drastically improve the evaluation of mosquito-targeted interventions. However, standard methods for age-grading mosquitoes are laborious and costly. We have shown that Mid-infrared spectroscopy (MIRS) can be used to detect age-specific patterns in mosquito cuticles and thus can be used to train age-grading machine learning models. However, these models tend to transfer poorly across populations. Here, we investigate whether applying dimensionality reduction and transfer learning to MIRS data can improve the transferability of MIRS-based predictions for mosquito ages. METHODS: We reared adults of the malaria vector Anopheles arabiensis in two insectaries. The heads and thoraces of female mosquitoes were scanned using an attenuated total reflection-Fourier transform infrared spectrometer, which were grouped into two different age classes. The dimensionality of the spectra data was reduced using unsupervised principal component analysis or t-distributed stochastic neighbour embedding, and then used to train deep learning and standard machine learning classifiers. Transfer learning was also evaluated to improve transferability of the models when predicting mosquito age classes from new populations. RESULTS: Model accuracies for predicting the age of mosquitoes from the same population as the training samples reached 99% for deep learning and 92% for standard machine learning. However, these models did not generalise to a different population, achieving only 46% and 48% accuracy for deep learning and standard machine learning, respectively. Dimensionality reduction did not improve model generalizability but reduced computational time. Transfer learning by updating pre-trained models with 2% of mosquitoes from the alternate population improved performance to ~ 98% accuracy for predicting mosquito age classes in the alternative population. CONCLUSION: Combining dimensionality reduction and transfer learning can reduce computational costs and improve the transferability of both deep learning and standard machine learning models for predicting the age of mosquitoes. Future studies should investigate the optimal quantities and diversity of training data necessary for transfer learning and the implications for broader generalisability to unseen datasets.


Subject(s)
Anopheles , Malaria , Animals , Adult , Female , Humans , Mosquito Vectors , Machine Learning
6.
Sci Adv ; 8(38): eabo1733, 2022 09 23.
Article in English | MEDLINE | ID: mdl-36129981

ABSTRACT

Gene drives hold promise for the genetic control of malaria vectors. The development of vector population modification strategies hinges on the availability of effector mechanisms impeding parasite development in transgenic mosquitoes. We augmented a midgut gene of the malaria mosquito Anopheles gambiae to secrete two exogenous antimicrobial peptides, magainin 2 and melittin. This small genetic modification, capable of efficient nonautonomous gene drive, hampers oocyst development in both Plasmodium falciparum and Plasmodium berghei. It delays the release of infectious sporozoites, while it simultaneously reduces the life span of homozygous female transgenic mosquitoes. Modeling the spread of this modification using a large-scale agent-based model of malaria epidemiology reveals that it can break the cycle of disease transmission across a range of transmission intensities.


Subject(s)
Anopheles , Gene Drive Technology , Malaria , Animals , Anopheles/genetics , Female , Magainins , Malaria/parasitology , Malaria/prevention & control , Melitten , Mosquito Vectors/genetics , Plasmodium berghei/genetics
7.
Malar J ; 21(1): 226, 2022 Jul 26.
Article in English | MEDLINE | ID: mdl-35883100

ABSTRACT

BACKGROUND: Gene drives are a genetic engineering method where a suite of genes is inherited at higher than Mendelian rates and has been proposed as a promising new vector control strategy to reinvigorate the fight against malaria in sub-Saharan Africa. METHODS: Using an agent-based model of malaria transmission with vector genetics, the impacts of releasing population-replacement gene drive mosquitoes on malaria transmission are examined and the population replacement gene drive system parameters required to achieve local elimination within a spatially-resolved, seasonal Sahelian setting are quantified. The performance of two different gene drive systems-"classic" and "integral"-are evaluated. Various transmission regimes (low, moderate, and high-corresponding to annual entomological inoculation rates of 10, 30, and 80 infectious bites per person) and other simultaneous interventions, including deployment of insecticide-treated nets (ITNs) and passive healthcare-seeking, are also simulated. RESULTS: Local elimination probabilities decreased with pre-existing population target site resistance frequency, increased with transmission-blocking effectiveness of the introduced antiparasitic gene and drive efficiency, and were context dependent with respect to fitness costs associated with the introduced gene. Of the four parameters, transmission-blocking effectiveness may be the most important to focus on for improvements to future gene drive strains because a single release of classic gene drive mosquitoes is likely to locally eliminate malaria in low to moderate transmission settings only when transmission-blocking effectiveness is very high (above ~ 80-90%). However, simultaneously deploying ITNs and releasing integral rather than classic gene drive mosquitoes significantly boosts elimination probabilities, such that elimination remains highly likely in low to moderate transmission regimes down to transmission-blocking effectiveness values as low as ~ 50% and in high transmission regimes with transmission-blocking effectiveness values above ~ 80-90%. CONCLUSION: A single release of currently achievable population replacement gene drive mosquitoes, in combination with traditional forms of vector control, can likely locally eliminate malaria in low to moderate transmission regimes within the Sahel. In a high transmission regime, higher levels of transmission-blocking effectiveness than are currently available may be required.


Subject(s)
Culicidae , Gene Drive Technology , Insecticides , Malaria , Animals , Humans , Malaria/prevention & control , Mosquito Control/methods , Mosquito Vectors/genetics , Population Dynamics , Seasons
8.
Evol Appl ; 15(1): 132-148, 2022 Jan.
Article in English | MEDLINE | ID: mdl-35126652

ABSTRACT

Malaria elimination will be challenging in countries that currently continue to bear high malaria burden. Sex-ratio-distorting gene drives, such as driving-Y, could play a role in an integrated elimination strategy if they can effectively suppress vector populations. Using a spatially explicit, agent-based model of malaria transmission in eight provinces spanning the range of transmission intensities across the Democratic Republic of the Congo, we predict the impact and cost-effectiveness of integrating driving-Y gene drive mosquitoes in malaria elimination strategies that include existing interventions such as insecticide-treated nets and case management of symptomatic malaria. Gene drive mosquitoes could eliminate malaria and were the most cost-effective intervention overall if the drive component was highly effective with at least 95% X-shredder efficiency at relatively low fertility cost, and associated cost of deployment below 7.17 $int per person per year. Suppression gene drive could be a cost-effective supplemental intervention for malaria elimination, but tight constraints on drive effectiveness and cost ceilings may limit its feasibility.

9.
PLOS Glob Public Health ; 2(1): e0000053, 2022.
Article in English | MEDLINE | ID: mdl-36962090

ABSTRACT

How COVID-19 vaccine is distributed within low- and middle-income countries has received little attention outside of equity or logistical concerns but may ultimately affect campaign impact in terms of infections, severe cases, or deaths averted. In this study we examined whether subnational (urban-rural) prioritization may affect the cumulative two-year impact on disease transmission and burden of a vaccination campaign using an agent-based model of COVID-19 in a representative COVID-19 Vaccines Global Access (COVAX) Advanced Market Commitment (AMC) setting. We simulated a range of vaccination strategies that differed by urban-rural prioritization, age group prioritization, timing of introduction, and final coverage level. Urban prioritization averted more infections in only a narrow set of scenarios, when internal migration rates were low and vaccination was started by day 30 of an outbreak. Rural prioritization was the optimal strategy for all other scenarios, e.g., with higher internal migration rates or later start dates, due to the presence of a large immunological naive rural population. Among other factors, timing of the vaccination campaign was important to determining maximum impact, and delays as short as 30 days prevented larger campaigns from having the same impact as smaller campaigns that began earlier. The optimal age group for prioritization depended on choice of metric, as prioritizing older adults consistently averted more deaths across all of the scenarios. While guidelines exist for these latter factors, urban-rural allocation is an orthogonal factor that we predict to affect impact and warrants consideration as countries plan the scale-up of their vaccination campaigns.

10.
Emerg Infect Dis ; 27(11): 2753-2760, 2021 11.
Article in English | MEDLINE | ID: mdl-34429188

ABSTRACT

We reviewed the timeline of key policies for control of the coronavirus disease epidemic and determined their impact on the epidemic and hospital burden in South Korea. Using a discrete stochastic transmission model, we estimated that multilevel policies, including extensive testing, contact tracing, and quarantine, reduced contact rates by 90% and rapidly decreased the epidemic in Daegu and nationwide during February‒March 2020. Absence of these prompt responses could have resulted in a >10-fold increase in infections, hospitalizations, and deaths by May 15, 2020, relative to the status quo. The model suggests that reallocation of persons who have mild or asymptomatic cases to community treatment centers helped avoid overwhelming hospital capacity and enabled healthcare workers to provide care for more severely and critically ill patients in hospital beds and negative-pressure intensive care units. As small outbreaks continue to occur, contact tracing and maintenance of hospital capacity are needed.


Subject(s)
COVID-19 , Epidemics , Cost of Illness , Humans , Policy , Republic of Korea/epidemiology , SARS-CoV-2
11.
PLoS Comput Biol ; 17(7): e1009149, 2021 07.
Article in English | MEDLINE | ID: mdl-34310589

ABSTRACT

The COVID-19 pandemic has created an urgent need for models that can project epidemic trends, explore intervention scenarios, and estimate resource needs. Here we describe the methodology of Covasim (COVID-19 Agent-based Simulator), an open-source model developed to help address these questions. Covasim includes country-specific demographic information on age structure and population size; realistic transmission networks in different social layers, including households, schools, workplaces, long-term care facilities, and communities; age-specific disease outcomes; and intrahost viral dynamics, including viral-load-based transmissibility. Covasim also supports an extensive set of interventions, including non-pharmaceutical interventions, such as physical distancing and protective equipment; pharmaceutical interventions, including vaccination; and testing interventions, such as symptomatic and asymptomatic testing, isolation, contact tracing, and quarantine. These interventions can incorporate the effects of delays, loss-to-follow-up, micro-targeting, and other factors. Implemented in pure Python, Covasim has been designed with equal emphasis on performance, ease of use, and flexibility: realistic and highly customized scenarios can be run on a standard laptop in under a minute. In collaboration with local health agencies and policymakers, Covasim has already been applied to examine epidemic dynamics and inform policy decisions in more than a dozen countries in Africa, Asia-Pacific, Europe, and North America.


Subject(s)
COVID-19 , Models, Biological , SARS-CoV-2 , Systems Analysis , Basic Reproduction Number , COVID-19/etiology , COVID-19/prevention & control , COVID-19/transmission , COVID-19 Testing , COVID-19 Vaccines , Computational Biology , Computer Simulation , Contact Tracing , Disease Progression , Hand Disinfection , Host Microbial Interactions , Humans , Masks , Mathematical Concepts , Pandemics , Physical Distancing , Quarantine , Software
12.
Nat Commun ; 12(1): 2993, 2021 05 20.
Article in English | MEDLINE | ID: mdl-34017008

ABSTRACT

Initial COVID-19 containment in the United States focused on limiting mobility, including school and workplace closures. However, these interventions have had enormous societal and economic costs. Here, we demonstrate the feasibility of an alternative control strategy, test-trace-quarantine: routine testing of primarily symptomatic individuals, tracing and testing their known contacts, and placing their contacts in quarantine. We perform this analysis using Covasim, an open-source agent-based model, which has been calibrated to detailed demographic, mobility, and epidemiological data for the Seattle region from January through June 2020. With current levels of mask use and schools remaining closed, we find that high but achievable levels of testing and tracing are sufficient to maintain epidemic control even under a return to full workplace and community mobility and with low vaccine coverage. The easing of mobility restrictions in June 2020 and subsequent scale-up of testing and tracing programs through September provided real-world validation of our predictions. Although we show that test-trace-quarantine can control the epidemic in both theory and practice, its success is contingent on high testing and tracing rates, high quarantine compliance, relatively short testing and tracing delays, and moderate to high mask use. Thus, in order for test-trace-quarantine to control transmission with a return to high mobility, strong performance in all aspects of the program is required.


Subject(s)
COVID-19/prevention & control , COVID-19/transmission , Contact Tracing/methods , Quarantine/methods , Humans , SARS-CoV-2/isolation & purification , United States
13.
Am J Trop Med Hyg ; 104(5): 1694-1702, 2021 Mar 08.
Article in English | MEDLINE | ID: mdl-33684067

ABSTRACT

The first case of COVID-19 in sub-Saharan Africa (SSA) was reported by Nigeria on February 27, 2020. Whereas case counts in the entire region remain considerably less than those being reported by individual countries in Europe, Asia, and the Americas, variation in preparedness and response capacity as well as in data availability has raised concerns about undetected transmission events in the SSA region. To capture epidemiological details related to early transmission events into and within countries, a line list was developed from publicly available data on institutional websites, situation reports, press releases, and social media accounts. The availability of indicators-gender, age, travel history, date of arrival in country, reporting date of confirmation, and how detected-for each imported case was assessed. We evaluated the relationship between the time to first reported importation and the Global Health Security Index (GHSI) overall score; 13,201 confirmed cases of COVID-19 were reported by 48 countries in SSA during the 54 days following the first known introduction to the region. Of the 2,516 cases for which travel history information was publicly available, 1,129 (44.9%) were considered importation events. Imported cases tended to be male (65.0%), with a median age of 41.0 years (range: 6 weeks-88 years; IQR: 31-54 years). A country's time to report its first importation was not related to the GHSI overall score, after controlling for air traffic. Countries in SSA generally reported with less publicly available detail over time and tended to have greater information on imported than local cases.


Subject(s)
COVID-19/epidemiology , SARS-CoV-2 , Adolescent , Adult , Africa South of the Sahara/epidemiology , Aged , Aged, 80 and over , COVID-19/transmission , Child , Child, Preschool , Female , Global Health , Humans , Infant , Male , Middle Aged , Travel , Young Adult
14.
Risk Manag Healthc Policy ; 13: 2571-2581, 2020.
Article in English | MEDLINE | ID: mdl-33209067

ABSTRACT

OBJECTIVE: To identify risk factors for intensive care unit (ICU) admission and mechanical ventilator usage among confirmed coronavirus disease (COVID-19) patients and estimate the effects of mitigation efforts on ICU capacity in Korea. PATIENTS AND METHODS: Data on profiles and medical history of all confirmed COVID-19 patients in the past 1 year were extracted from the Korean National Health Insurance System's claims database to assess risk factors for ICU admission and ventilator use. We used a time-series epidemic model to estimate the ICU census in Daegu from the reported hospital data. FINDINGS: Multivariate regression analysis revealed male sex, old age, and residing in Daegu city as significant risk factors for ICU admission. The number of patients requiring ICU admission exceeded the bed capacity across all Daegu hospitals before March 9, 2020, and therefore, critically ill patients were transferred to nearby hospitals outside Daegu. This finding was consistent with our prediction that the ICU census in Daegu would peak on March 16, 2020, at 160 through mitigation efforts, without which it would have reached 300 by late March 2020. CONCLUSION: Older age and male sex were risk factors for ICU admission. In addition, the geographic location of the hospital seems to contribute to the severity of the COVID-19 patients admitted to the ICU and to the ICU capacity.

15.
Am J Trop Med Hyg ; 103(5): 1758-1761, 2020 11.
Article in English | MEDLINE | ID: mdl-33069267

ABSTRACT

We calculated carbon emissions associated with air travel of 4,834 participants at the 2019 annual conference of the American Society of Tropical Medicine and Hygiene (ASTMH). Together, participants traveled a total of 27.7 million miles or 44.6 million kilometers. This equates to 58 return trips to the moon. Estimated carbon dioxide equivalent (CO2e) emissions were 8,646 metric tons or the total weekly carbon footprint of approximately 9,366 average American households. These emissions contribute to climate change and thus may exacerbate many of the global diseases that conference attendees seek to combat. Options to reduce conference travel-associated emissions include 1) alternating in-person and online conferences, 2) offering a hybrid in-person/online conference, and 3) decentralizing the conference with multiple conference venues. Decentralized ASTMH conferences may allow for up to 64% reduction in travel distance and 58% reduction in CO2e emissions. Given the urgency of the climate crisis and the clear association between global warming and global health, ways to reduce carbon emissions should be considered.


Subject(s)
Carbon Footprint , Hygiene , Societies, Scientific/organization & administration , Travel , Tropical Medicine , Climate Change , Humans , United States
16.
PLoS Comput Biol ; 16(8): e1008121, 2020 08.
Article in English | MEDLINE | ID: mdl-32797077

ABSTRACT

Vector control has been a key component in the fight against malaria for decades, and chemical insecticides are critical to the success of vector control programs worldwide. However, increasing resistance to insecticides threatens to undermine these efforts. Understanding the evolution and propagation of resistance is thus imperative to mitigating loss of intervention effectiveness. Additionally, accelerated research and development of new tools that can be deployed alongside existing vector control strategies is key to eradicating malaria in the near future. Methods such as gene drives that aim to genetically modify large mosquito populations in the wild to either render them refractory to malaria or impair their reproduction may prove invaluable tools. Mathematical models of gene flow in populations, which is the transfer of genetic information from one population to another through migration, can offer invaluable insight into the behavior and potential impact of gene drives as well as the spread of insecticide resistance in the wild. Here, we present the first multi-locus, agent-based model of vector genetics that accounts for mutations and a many-to-many mapping cardinality of genotypes to phenotypes to investigate gene flow, and the propagation of gene drives in Anopheline populations. This model is embedded within a large scale individual-based model of malaria transmission representative of a high burden, high transmission setting characteristic of the Sahel. Results are presented for the selection of insecticide-resistant vectors and the spread of resistance through repeated deployment of insecticide treated nets (ITNs), in addition to scenarios where gene drives act in concert with existing vector control tools such as ITNs. The roles of seasonality, spatial distribution of vector habitat and feed sites, and existing vector control in propagating alleles that confer phenotypic traits via gene drives that result in reduced transmission are explored. The ability to model a spectrum of vector species with different genotypes and phenotypes in the context of malaria transmission allows us to test deployment strategies for existing interventions that reduce the deleterious effects of resistance and allows exploration of the impact of new tools being proposed or developed.


Subject(s)
Anopheles/genetics , Gene Drive Technology/methods , Insecticide Resistance/genetics , Malaria , Mosquito Vectors/genetics , Animals , Genetic Fitness , Humans , Malaria/prevention & control , Malaria/transmission , Systems Analysis
17.
Malar J ; 18(1): 341, 2019 Oct 07.
Article in English | MEDLINE | ID: mdl-31590669

ABSTRACT

BACKGROUND: Epidemiological surveys of malaria currently rely on microscopy, polymerase chain reaction assays (PCR) or rapid diagnostic test kits for Plasmodium infections (RDTs). This study investigated whether mid-infrared (MIR) spectroscopy coupled with supervised machine learning could constitute an alternative method for rapid malaria screening, directly from dried human blood spots. METHODS: Filter papers containing dried blood spots (DBS) were obtained from a cross-sectional malaria survey in 12 wards in southeastern Tanzania in 2018/19. The DBS were scanned using attenuated total reflection-Fourier Transform Infrared (ATR-FTIR) spectrometer to obtain high-resolution MIR spectra in the range 4000 cm-1 to 500 cm-1. The spectra were cleaned to compensate for atmospheric water vapour and CO2 interference bands and used to train different classification algorithms to distinguish between malaria-positive and malaria-negative DBS papers based on PCR test results as reference. The analysis considered 296 individuals, including 123 PCR-confirmed malaria positives and 173 negatives. Model training was done using 80% of the dataset, after which the best-fitting model was optimized by bootstrapping of 80/20 train/test-stratified splits. The trained models were evaluated by predicting Plasmodium falciparum positivity in the 20% validation set of DBS. RESULTS: Logistic regression was the best-performing model. Considering PCR as reference, the models attained overall accuracies of 92% for predicting P. falciparum infections (specificity = 91.7%; sensitivity = 92.8%) and 85% for predicting mixed infections of P. falciparum and Plasmodium ovale (specificity = 85%, sensitivity = 85%) in the field-collected specimen. CONCLUSION: These results demonstrate that mid-infrared spectroscopy coupled with supervised machine learning (MIR-ML) could be used to screen for malaria parasites in human DBS. The approach could have potential for rapid and high-throughput screening of Plasmodium in both non-clinical settings (e.g., field surveys) and clinical settings (diagnosis to aid case management). However, before the approach can be used, we need additional field validation in other study sites with different parasite populations, and in-depth evaluation of the biological basis of the MIR signals. Improving the classification algorithms, and model training on larger datasets could also improve specificity and sensitivity. The MIR-ML spectroscopy system is physically robust, low-cost, and requires minimum maintenance.


Subject(s)
Dried Blood Spot Testing/instrumentation , Malaria, Falciparum/diagnosis , Plasmodium falciparum/isolation & purification , Spectrophotometry, Infrared/methods , Supervised Machine Learning , Humans , Logistic Models , Malaria, Falciparum/blood , Tanzania
18.
Malar J ; 18(1): 307, 2019 Sep 05.
Article in English | MEDLINE | ID: mdl-31488139

ABSTRACT

BACKGROUND: While bed nets and insecticide spraying have had significant impact on malaria burden in many endemic regions, outdoor vector feeding and insecticide resistance may ultimately limit their contribution to elimination and control campaigns. Complementary vector control methods such as endectocides or systemic insecticides, where humans or animals are treated with drugs that kill mosquitoes upon ingestion via blood meal, are therefore generating much interest. This work explores the conditions under which long-lasting systemic insecticides would have a substantial impact on transmission and burden. METHODS: Hypothetical long-lasting systemic insecticides with effective durations ranging from 14 to 90 days are simulated using an individual-based mathematical model of malaria transmission. The impact of systemic insecticides when used to complement existing vector control and drug campaigns is evaluated in three settings-a highly seasonal high-transmission setting, a near-elimination setting with seasonal travel to a high-risk area, and a near-elimination setting in southern Africa. RESULTS: At 60% coverage, a single round of long-lasting systemic insecticide with effective duration of at least 60 days, distributed at the start of the season alongside a seasonal malaria chemoprevention campaign in a high-transmission setting, results in further burden reduction of 30-90% depending on the sub-populations targeted. In a near-elimination setting where transmission is sustained by seasonal travel to a high-risk area, targeting high-risk travellers with systemic insecticide with effective duration of at least 30 days can result in likely elimination even if intervention coverage is as low as 50%. In near-elimination settings with robust vector control, the addition of a 14-day systemic insecticide alongside an anti-malarial in mass drug administration (MDA) campaigns can decrease the necessary MDA coverage from about 85% to the more easily achievable 65%. CONCLUSIONS: While further research into the safety profile of systemic insecticides is necessary before deployment, models predict that long-lasting systemic insecticides can play a critical role in reducing burden or eliminating malaria in a range of contexts with different target populations, existing malaria control methods, and transmission intensities. Continued investment in lengthening the duration of systemic insecticides and improving their safety profile is needed for this intervention to achieve its fullest potential.


Subject(s)
Antimalarials/therapeutic use , Communicable Disease Control/methods , Insecticides/therapeutic use , Malaria/prevention & control , Mosquito Control/methods , Humans , Models, Theoretical , Nigeria , Zambia
19.
BMJ Open ; 9(9): e030598, 2019 09 13.
Article in English | MEDLINE | ID: mdl-31519680

ABSTRACT

INTRODUCTION: A large proportion of malaria-infected individuals in endemic areas do not experience symptoms that prompt treatment-seeking. These asymptomatically infected individuals may retain their infections for many months during which sexual-stage parasites (gametocytes) are produced that may be transmissible to mosquitoes. Reductions in malaria transmission could be achieved by detecting and treating these infections early. This study assesses the impact of enhanced community case management (CCM) and monthly screening and treatment (MSAT) on the prevalence and transmissibility of malaria infections. METHODS AND ANALYSIS: This cluster-randomised trial will take place in Sapone, an area of intense, highly seasonal malaria in Burkina Faso. In total, 180 compounds will be randomised to one of three interventions: arm 1 - current standard of care with passively monitored malaria infections; arm 2 - standard of care plus enhanced CCM, comprising active weekly screening for fever, and detection and treatment of infections in fever positive individuals using conventional rapid diagnostic tests (RDTs); or arm 3 - standard of care and enhanced CCM, plus MSAT using RDTs. The study will be conducted over approximately 18 months covering two high-transmission seasons and the intervening dry season. The recruitment strategy aims to ensure that overall transmission and force of infection is not affected so we are able to continuously evaluate the impact of interventions in the context of ongoing intense malaria transmission. The main objectives of the study are to determine the impact of enhanced CCM and MSAT on the prevalence and density of parasitaemia and gametocytaemia and the transmissibility of infections. This will be achieved by molecular detection of infections in all study participants during start and end season cross-sectional surveys and routine sampling of malaria-positive individuals to assess their infectiousness to mosquitoes. ETHICS AND DISSEMINATION: The study has been reviewed and approved by the London School of Hygiene and Tropical Medicine (LSHTM) (Review number: 14724) and The Centre National de Recherche et de Formation sur le Paludisme institutional review board (IRB) (Deliberation N° 2018/000002/MS/SG/CNRFP/CIB) and Burkina Faso national medical ethics committees (Deliberation N° 2018-01-010).Findings of the study will be shared with the community via local opinion leaders and community meetings. Results may also be shared through conferences, seminars, reports, theses and peer-reviewed publications; disease occurrence data and study outcomes will be shared with the Ministry of Health. Data will be published in an online digital repository. TRIAL REGISTRATION NUMBER: NCT03705624.


Subject(s)
Asymptomatic Infections , Case Management/organization & administration , Delivery of Health Care/methods , Disease Transmission, Infectious/prevention & control , Malaria , Mass Screening , Adult , Asymptomatic Infections/epidemiology , Asymptomatic Infections/therapy , Burkina Faso/epidemiology , Child , Cluster Analysis , Female , Humans , Malaria/diagnosis , Malaria/epidemiology , Malaria/therapy , Malaria/transmission , Male , Mass Screening/methods , Mass Screening/organization & administration , Plasmodium falciparum/isolation & purification , Prevalence , Randomized Controlled Trials as Topic , Research Design
20.
Malar J ; 18(1): 187, 2019 May 30.
Article in English | MEDLINE | ID: mdl-31146762

ABSTRACT

BACKGROUND: The propensity of different Anopheles mosquitoes to bite humans instead of other vertebrates influences their capacity to transmit pathogens to humans. Unfortunately, determining proportions of mosquitoes that have fed on humans, i.e. Human Blood Index (HBI), currently requires expensive and time-consuming laboratory procedures involving enzyme-linked immunosorbent assays (ELISA) or polymerase chain reactions (PCR). Here, mid-infrared (MIR) spectroscopy and supervised machine learning are used to accurately distinguish between vertebrate blood meals in guts of malaria mosquitoes, without any molecular techniques. METHODS: Laboratory-reared Anopheles arabiensis females were fed on humans, chickens, goats or bovines, then held for 6 to 8 h, after which they were killed and preserved in silica. The sample size was 2000 mosquitoes (500 per host species). Five individuals of each host species were enrolled to ensure genotype variability, and 100 mosquitoes fed on each. Dried mosquito abdomens were individually scanned using attenuated total reflection-Fourier transform infrared (ATR-FTIR) spectrometer to obtain high-resolution MIR spectra (4000 cm-1 to 400 cm-1). The spectral data were cleaned to compensate atmospheric water and CO2 interference bands using Bruker-OPUS software, then transferred to Python™ for supervised machine-learning to predict host species. Seven classification algorithms were trained using 90% of the spectra through several combinations of 75-25% data splits. The best performing model was used to predict identities of the remaining 10% validation spectra, which had not been used for model training or testing. RESULTS: The logistic regression (LR) model achieved the highest accuracy, correctly predicting true vertebrate blood meal sources with overall accuracy of 98.4%. The model correctly identified 96% goat blood meals, 97% of bovine blood meals, 100% of chicken blood meals and 100% of human blood meals. Three percent of bovine blood meals were misclassified as goat, and 2% of goat blood meals misclassified as human. CONCLUSION: Mid-infrared spectroscopy coupled with supervised machine learning can accurately identify multiple vertebrate blood meals in malaria vectors, thus potentially enabling rapid assessment of mosquito blood-feeding histories and vectorial capacities. The technique is cost-effective, fast, simple, and requires no reagents other than desiccants. However, scaling it up will require field validation of the findings and boosting relevant technical capacity in affected countries.


Subject(s)
Anopheles/physiology , Mosquito Vectors/physiology , Spectrophotometry, Infrared , Supervised Machine Learning , Vertebrates/blood , Animals , Blood , Chickens/blood , Feeding Behavior , Female , Goats/blood , Host Specificity , Humans , Logistic Models , Malaria/blood
SELECTION OF CITATIONS
SEARCH DETAIL
...