Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Appl Mater Interfaces ; 12(22): 24756-24766, 2020 Jun 03.
Article in English | MEDLINE | ID: mdl-32393018

ABSTRACT

Despite the ever-growing demand for benzene-toluene-xylene (BTX), the alternative route of production from tree-borne oils is rarely investigated and poorly understood. Here, we have synthesized a Zn-loaded Y-zeolite catalyst for the continuous production of bio-BTX from tree-borne oils (nonedible seed oil), e.g., neem oil. Our approach involves low-temperature selective cracking-dehydrogenation-aromatization of neem oil over metal-supported catalysts to xylene-rich aromatics. The physicochemical properties of the prepared catalyst were characterized using powder XRD, N2 physisorption, TEM, NH3-TPD, XPS, Py-FTIR, solid-NMR, and TG analyses. Mesoporous Y-zeolites with a pore diameter of 7.4 Šshowed better selectivity toward aromatics and were found to be the most effective catalyst for the aromatization process, especially for BTX. The aromatic yield was found to increase with the addition of Zn, and the highest conversion of 90-94% with an ∼75% BTX yield was achieved with the ZnY catalyst. During aromatization, a sizable number of short alkanes and olefins were also obtained on acidic Y-zeolites. The off-gas composition shows the presence of ∼45% C2-C4 olefins with 8.9% H2. The incorporation of Zn species can promote the dehydrogenation activity, and the subsequent aromatization required a suitable pore network. The optimized ZnY catalyst inspires the formation of toluene and xylenes, inhibiting the formation of benzene and gaseous alkanes.

2.
ACS Omega ; 3(3): 2558-2563, 2018 Mar 31.
Article in English | MEDLINE | ID: mdl-31458544

ABSTRACT

The structural changes in the guest platinum(II)tetraammine complex due to the steric and electronic interactions with the host zeolite frameworks LTL, MWW, and Y have been investigated using density functional theory calculations. It is observed that the square planar geometry of platinum(II)tetraammine complex has been distorted to nonplanar geometry when encapsulated in supercages of zeolite framework. The distortion is found to be higher in LTL than that in Y and MWW frameworks, without affecting the nature of the zeolite framework. Geometrical parameters, highest occupied molecular orbital and lowest unoccupied molecular orbital energies, global hardness, and softness were calculated to understand the distortion in the pores of the zeolite matrix. The most plausible active site of the complex was identified using the Fukui functions.

3.
ACS Omega ; 3(8): 9613-9619, 2018 Aug 31.
Article in English | MEDLINE | ID: mdl-31459092

ABSTRACT

Density functional theory (DFT) used to study the encapsulation of copper(II)phthalocyanine and chlorine-substituted copper(II)phthalocyanine to a zeolite-Y framework. Changes occurring in the redox properties, as well as the red shift of the time-dependent DFT (TD-DFT) spectra, point out the influence of encapsulation on the geometric parameters of the complexes. Also, the TD-DFT calculations show good agreement with the energy changes occurred in the highest occupied molecular orbital and lowest unoccupied molecular orbital. DFT-based descriptors are used for scrutinizing the reactivity of the encapsulated complexes and a mechanism of the glycidol formation is proposed based on the energetics involved in the transformation.

SELECTION OF CITATIONS
SEARCH DETAIL
...