Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Type of study
Language
Publication year range
1.
Preprint in English | medRxiv | ID: ppmedrxiv-22268808

ABSTRACT

The use of facial protection, including masks and respirators, has been adopted globally due to the COVID-19 pandemic. These products have been demonstrated to be effective in reducing the transmission of the virus. To determine whether or not the virus adheres to masks and respirators, we dissected four respirators and one surgical mask into layers. These individual layers were contaminated with the SARS-CoV-2 delta variant, and its release by vortexing was performed. Samples were used to infect Vero cells, and a plaque assay was used to determine to evaluate the adherence of the virus. Results showed that a cumulative log reduction of the layers reduced the load of the virus six-folds. Our study confirms the effectiveness of facial protection in reducing the transmission and or infection of the virus.

2.
Preprint in English | bioRxiv | ID: ppbiorxiv-472255

ABSTRACT

BackgroundSARS-CoV-2 variants of concern (VOC) represent an alarming threat as they show altered biological behavior and may escape vaccination effectiveness. Some exhibit increased pathogenicity and transmissibility compared to the original wild type WUHAN (Hu-1). Broad-spectrum antivirals could complement and further enhance preventive benefits achieved through SARS-CoV-2 vaccination campaigns MethodsThe anti-coronavirus activity of Echinacea purpurea (Echinaforce(R) extract, EF) against (i) VOCs B1.1.7 (alpha), B.1.351.1 (beta), P.1 (gamma), B1.617.2 (delta), AV.1 (Scottish) and B1.525 (eta), (ii) SARS-CoV-2 spike (S) protein-pseudotyped viral particles and reference strain OC43 as well as (iii) wild-type SARS-CoV-2 (Hu-1) were analyzed. Molecular dynamics (MD) were applied to study interaction of Echinaceas phytochemical markers with known pharmacological viral and host cell targets. ResultsEF extract broadly inhibited propagation of all investigated SARS-CoV-2 VOCs as well as entry of SARS-CoV-2 pseudoparticles at EC50s ranging from 3.62 to 12.03 {micro}g/ml. Preventive addition of 20 {micro}g/ml EF to epithelial cells significantly reduced sequential infection with SARS-CoV-2 (Hu-1) as well as with the common human strain OC43. MD analyses showed constant binding affinities to Hu-1, B1.1.7, B.1.351, P.1 and B1.617.2-typic S protein variants for alkylamides, caftaric acidand feruoyl-tartaric acid in EF extract. They further indicated that the EF extract could possibly interact with TMPRSS-2, a serine protease required for virus endocytosis. ConclusionsEF extract demonstrated stable antiviral activity across 6 tested VOCs, which is likely due to the constant affinity of the contained phytochemical marker substances to all spike variants. A possible interaction of EF with TMPRSS-2 partially would explain cell protective benefits of the extract by inhibition of endocytosis. EF may therefore offer a supportive addition to vaccination endeavors in the control of existing and future SARS-CoV-2 virus mutations.

SELECTION OF CITATIONS
SEARCH DETAIL
...