Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
G3 (Bethesda) ; 13(12)2023 Dec 06.
Article in English | MEDLINE | ID: mdl-37804092

ABSTRACT

Coral species in the genus Acropora are key ecological components of coral reefs worldwide and represent the most diverse genus of scleractinian corals. While key species of Indo-Pacific Acropora have annotated genomes, no annotated genome has been published for either of the two species of Caribbean Acropora. Here we present the first fully annotated genome of the endangered Caribbean staghorn coral, Acropora cervicornis. We assembled and annotated this genome using high-fidelity nanopore long-read sequencing with gene annotations validated with mRNA sequencing. The assembled genome size is 318 Mb, with 28,059 validated genes. Comparative genomic analyses with other Acropora revealed unique features in A. cervicornis, including contractions in immune pathways and expansions in signaling pathways. Phylogenetic analysis confirms previous findings showing that A. cervicornis diverged from Indo-Pacific relatives around 41 million years ago, with the closure of the western Tethys Sea, prior to the primary radiation of Indo-Pacific Acropora. This new A. cervicornis genome enriches our understanding of the speciose Acropora and addresses evolutionary inquiries concerning speciation and hybridization in this diverse clade.


Subject(s)
Anthozoa , Animals , Anthozoa/genetics , Phylogeny , Coral Reefs , Caribbean Region
2.
Science ; 381(6665): 1451-1454, 2023 Sep 29.
Article in English | MEDLINE | ID: mdl-37769073

ABSTRACT

White band disease (WBD) has caused unprecedented declines in the Caribbean Acropora corals, which are now listed as critically endangered species. Highly disease-resistant Acropora cervicornis genotypes exist, but the genetic underpinnings of disease resistance are not understood. Using transmission experiments, a newly assembled genome, and whole-genome resequencing of 76 A. cervicornis genotypes from Florida and Panama, we identified 10 genomic regions and 73 single-nucleotide polymorphisms that are associated with disease resistance and that include functional protein-coding changes in four genes involved in coral immunity and pathogen detection. Polygenic scores calculated from 10 genomic loci indicate that genetic screens can detect disease resistance in wild and nursery stocks of A. cervicornis across the Caribbean.

3.
FEMS Microbiol Ecol ; 99(2)2023 01 24.
Article in English | MEDLINE | ID: mdl-36631299

ABSTRACT

Marine deep subsurface sediment is often a microbial environment under energy-limited conditions. However, microbial life has been found to persist and even thrive in deep subsurface environments. The Mariana forearc represents an ideal location for determining how microbial life can withstand extreme conditions including pH 10-12.5 and depleted nutrients. The International Ocean Discovery Program Expedition 366 to the Mariana Convergent Margin sampled three serpentinizing seamounts located along the Mariana forearc chain with elevated concentrations of methane, hydrogen, and sulfide. Across all three seamount summits, the most abundant transcripts were for cellular maintenance such as cell wall and membrane repair, and the most abundant metabolic pathways were the Entner-Doudoroff pathway and tricarboxylic acid cycle. At flank samples, sulfur cycling involving taurine assimilation dominated the metatranscriptomes. The in situ activity of these pathways was supported by the detection of their metabolic intermediates. All samples had transcripts from all three domains of Bacteria, Archaea, and Eukarya, dominated by Burkholderiales, Deinococcales, and Pseudomonales, as well as the fungal group Opisthokonta. All samples contained transcripts for aerobic methane oxidation (pmoABC) and denitrification (nirKS). The Mariana forearc microbial communities show activity not only consistent with basic survival mechanisms, but also coupled metabolic reactions.


Subject(s)
Bacteria , Seawater , Seawater/microbiology , Bacteria/genetics , Bacteria/metabolism , Archaea/genetics , Archaea/metabolism , Geologic Sediments/microbiology , Methane/metabolism , Phylogeny
4.
PeerJ ; 9: e12205, 2021.
Article in English | MEDLINE | ID: mdl-34692250

ABSTRACT

The eastern oyster, Crassostrea virginica, is divided into four populations along the western North Atlantic, however, the only published mitochondrial genome sequence was assembled using one individual in Delaware. This study aimed to (1) assemble C. virginica mitochondrial genomes from Texas with pooled restriction-site-associated DNA sequencing (ezRAD), (2) evaluate the validity of the mitochondrial genome assemblies including comparison with Sanger sequencing data, and (3) evaluate genetic differentiation both between the Delaware and Texas genomes, as well as among three bays in Texas. The pooled-genome-assembled-genomes (PAGs) from Texas exhibited several characteristics indicating that they were valid, including elevated nucleotide diversity in non-coding and the third position of codons, placement as the sister haplotype of the genome from Delaware in a phylogenetic reconstruction of Crassostrea mitochondrial genomes, and a lack of genetic structure in the ND4 gene among the three Texas bays as was found with Sanger amplicons in samples from the same bays several years prior. In the comparison between the Delaware and Texas genome, 27 of 38 coding regions exhibited variability between the two populations, which were differentiated by 273 mutations, versus 1-13 mutations among the Texas samples. Using the full PAGs, there was no additional evidence for population structure among the three Texas bays. While population genetics is rapidly moving towards larger high-density datasets, studies of mitochondrial DNA (and genomes) can be particularly useful for comparing historic data prior to the modern era of genomics. As such, being able to reliably compile mitochondrial genomes from genomic data can improve the ability to compare results across studies.

5.
PeerJ ; 5: e3043, 2017.
Article in English | MEDLINE | ID: mdl-28243542

ABSTRACT

Introduced Indo-Pacific red lionfish (Pterois volitans/miles) have spread throughout the greater Caribbean and are associated with a number of negative impacts on reef ecosystems. Human interventions, in the form of culling activities, are becoming common to reduce their numbers and mitigate the negative effects associated with the invasion. However, marine managers must often decide how to best allocate limited resources. Previous work has identified the population size thresholds needed to limit the negative impacts of lionfish. Here we develop a framework that allows managers to predict the removal effort required to achieve specific targets (represented as the percent of lionfish remaining on the reef). We found an important trade-off between time spent removing and achieving an increasingly smaller lionfish density. The model used in our suggested framework requires relatively little data to parameterize, allowing its use with already existing data, permitting managers to tailor their culling strategy to maximize efficiency and rate of success.

6.
PeerJ ; 5: e3996, 2017.
Article in English | MEDLINE | ID: mdl-29302383

ABSTRACT

The invasion of the western Atlantic Ocean by the Indo-Pacific red lionfish (Pterois volitans) has had devastating consequences for marine ecosystems. Estimating the number of colonizing lionfish can be useful in identifying the introduction pathway and can inform policy decisions aimed at preventing similar invasions. It is well-established that at least ten lionfish were initially introduced. However, that estimate has not faced probabilistic scrutiny and is based solely on the number of haplotypes in the maternally-inherited mitochondrial control region. To rigorously estimate the number of lionfish that were introduced, we used a forward-time, Wright-Fisher, population genetic model in concert with a demographic, life-history model to simulate the invasion across a range of source population sizes and colonizing population fecundities. Assuming a balanced sex ratio and no Allee effects, the simulations indicate that the Atlantic population was founded by 118 (54-514, 95% HPD) lionfish from the Indo-Pacific, the Caribbean by 84 (22-328, 95% HPD) lionfish from the Atlantic, and the Gulf of Mexico by at least 114 (no upper bound on 95% HPD) lionfish from the Caribbean. Increasing the size, and therefore diversity, of the Indo-Pacific source population and fecundity of the founding population caused the number of colonists to decrease, but with rapidly diminishing returns. When the simulation was parameterized to minimize the number of colonists (high θ and relative fecundity), 96 (48-216, 95% HPD) colonists were most likely. In a more realistic scenario with Allee effects (e.g., 50% reduction in fecundity) plaguing the colonists, the most likely number of lionfish increased to 272 (106-950, 95% HPD). These results, in combination with other published data, support the hypothesis that lionfish were introduced to the Atlantic via the aquarium trade, rather than shipping. When building the model employed here, we made assumptions that minimize the number of colonists, such as the lionfish being introduced in a single event. While we conservatively modelled the introduction pathway as a single release of lionfish in one location, it is more likely that a combination of smaller and larger releases from a variety of aquarium trade stakeholders occurred near Miami, Florida, which could have led to even larger numbers of colonists than simulated here. Efforts to prevent future invasions via the aquarium trade should focus on the education of stakeholders and the prohibition of release, with adequate rewards for compliance and penalties for violations.

7.
PLoS One ; 11(4): e0153381, 2016.
Article in English | MEDLINE | ID: mdl-27119659

ABSTRACT

The phenomenon of chaotic genetic patchiness is a pattern commonly seen in marine organisms, particularly those with demersal adults and pelagic larvae. This pattern is usually associated with sweepstakes recruitment and variable reproductive success. Here we investigate the biological underpinnings of this pattern in a species of marine goby Coryphopterus personatus. We find that populations of this species show tell-tale signs of chaotic genetic patchiness including: small, but significant, differences in genetic structure over short distances; a non-equilibrium or "chaotic" pattern of differentiation among locations in space; and within locus, within population deviations from the expectations of Hardy-Weinberg equilibrium (HWE). We show that despite having a pelagic larval stage, and a wide distribution across Caribbean coral reefs, this species forms groups of highly related individuals at small spatial scales (<10 metres). These spatially clustered family groups cause the observed deviations from HWE and local population differentiation, a finding that is rarely demonstrated, but could be more common than previously thought.


Subject(s)
Fishes/genetics , Genetic Variation/genetics , Microsatellite Repeats/genetics , Animals , Caribbean Region , Coral Reefs , Genetics, Population/methods , Larva/genetics , Perciformes/genetics , Reproduction/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...