Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Proteomics ; 131: 48-60, 2016 Jan 10.
Article in English | MEDLINE | ID: mdl-26455813

ABSTRACT

Pollen cells possess specialized cellular compartments separated by membranes. Consequently, mature pollen contains proteinaceous factors for inter- and intracellular transport of metabolites or ions to facilitate the upcoming energy exhausting processes - germination and fertilization. Despite the current advancement in the understanding of pollen development little is known about the role and molecular nature of the membrane proteome that participates in functioning and development of male gametophyte. We dissected the membrane proteome of mature pollen from economically important crop Solanum lycopersicum (tomato). Isolated membrane fractions from mature pollen of two tomato cultivars (cv. Moneymaker and cv. Red setter) were subjected to shotgun proteomics (GEL-LC-Orbitrap-MS). The global tomato protein assignment was achieved by mapping the peptides on reference genome (cv. Heinz 1706) and de novo assembled transcriptome based on mRNA sequencing from the respective cultivar. We identified 687 proteins, where 176 were assigned as putative membrane proteins. About 58% of the identified membrane proteins participate in transport processes. In depth analysis revealed proteins corresponding to energy related pathways (Glycolysis and Krebs cycle) as prerequisite for mature pollen, thereby revealing a reliable model of energy reservoir of the male gametophyte. BIOLOGICAL SIGNIFICANCE: Mature pollen plays an indispensable role in plant fertility and crop production. To decipher the functionality of pollen global proteomics studies have been undertaken. However, these datasets are deficient in membrane proteins due to their low abundance and solubility. The work presented here provides a comprehensive investigation of membrane proteome of male gametophyte of an agriculturally important crop plant tomato. The analysis of membrane enriched fractions from two tomato cultivars ensured an effective profiling of the pollen membrane proteome. Particularly proteins of the Krebs cycle or the glycolysis process have been detected and thus a model for the energy dynamics and preparedness of the male gametophyte for the upcoming events - germination and fertilization is provided.


Subject(s)
Gene Expression Profiling/methods , Membrane Proteins/metabolism , Plant Proteins/metabolism , Pollen/metabolism , Proteome/metabolism , Solanum lycopersicum/metabolism
2.
Front Microbiol ; 6: 219, 2015.
Article in English | MEDLINE | ID: mdl-25852675

ABSTRACT

Cyanobacteria are photosynthetic prokaryotes important for many ecosystems with a high potential for biotechnological usage e.g., in the production of bioactive molecules. Either asks for a deep understanding of the functionality of cyanobacteria and their interaction with the environment. This in part can be inferred from the analysis of their genomes or proteomes. Today, many cyanobacterial genomes have been sequenced and annotated. This information can be used to identify biological pathways present in all cyanobacteria as proteins involved in such processes are encoded by a so called core-genome. However, beside identification of fundamental processes, genes specific for certain cyanobacterial features can be identified by a holistic genome analysis as well. We identified 559 genes that define the core-genome of 58 analyzed cyanobacteria, as well as three genes likely to be signature genes for thermophilic and 57 genes likely to be signature genes for heterocyst-forming cyanobacteria. To get insights into cyanobacterial systems for the interaction with the environment we also inspected the diversity of the outer membrane proteome with focus on ß-barrel proteins. We observed that most of the transporting outer membrane ß-barrel proteins are not globally conserved in the cyanobacterial phylum. In turn, the occurrence of ß-barrel proteins shows high strain specificity. The core set of outer membrane proteins globally conserved in cyanobacteria comprises three proteins only, namely the outer membrane ß-barrel assembly protein Omp85, the lipid A transfer protein LptD, and an OprB-type porin. Thus, we conclude that cyanobacteria have developed individual strategies for the interaction with the environment, while other intracellular processes like the regulation of the protein homeostasis are globally conserved.

SELECTION OF CITATIONS
SEARCH DETAIL
...