Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 32
Filter
Add more filters










Publication year range
1.
Nutrients ; 14(7)2022 Mar 27.
Article in English | MEDLINE | ID: mdl-35406012

ABSTRACT

The protective effects of recombinant human lactoferrin rhLF (branded "CAPRABEL™") on the cognitive functions of rat offspring subjected to prenatal hypoxia (7% O2, 3 h, 14th day of gestation) have been analyzed. About 90% of rhLF in CAPRABEL was iron-free (apo-LF). Rat dams received several injections of 10 mg of CAPRABEL during either gestation (before and after the hypoxic attack) or lactation. Western blotting revealed the appearance of erythropoietin (EPO) alongside the hypoxia-inducible factors (HIFs) in organ homogenates of apo-rhLF-treated pregnant females, their embryos (but not placentas), and in suckling pups from the dams treated with apo-rhLF during lactation. Apo-rhLF injected to rat dams either during pregnancy or nurturing the pups was able to rescue cognitive deficits caused by prenatal hypoxia and improve various types of memory both in young and adult offspring when tested in the radial maze and by the Novel Object Recognition (NOR) test. The data obtained suggested that the apo-form of human LF injected to female rats during gestation or lactation protects the cognitive functions of their offspring impaired by prenatal hypoxia.


Subject(s)
Erythropoietin , Lactoferrin , Animals , Cognition , Erythropoietin/metabolism , Erythropoietin/pharmacology , Female , Hypoxia/complications , Hypoxia/drug therapy , Pregnancy , Rats , Recombinant Proteins/pharmacology , Vitamins
2.
Int J Biol Macromol ; 195: 30-40, 2022 Jan 15.
Article in English | MEDLINE | ID: mdl-34863835

ABSTRACT

Previously we have shown that lactoferrin (LTF), a protein of secondary neutrophilic granules, can be efficiently modified by hypohalous acids (HOCl and HOBr), which are produced at high concentrations during inflammation and oxidative/halogenative stress by myeloperoxidase, an enzyme of azurophilic neutrophilic granules. Here we compared the effects of recombinant human lactoferrin (rhLTF) and its halogenated derivatives (rhLTF-Cl and rhLTF-Br) on functional responses of neutrophils. Our results demonstrated that after halogenative modification, rhLTF lost its ability to induce mobilization of intracellular calcium, actin cytoskeleton reorganization, and morphological changes in human neutrophils. Moreover, both forms of the halogenated rhLTF prevented binding of N-acetylglucosamine-specific plant lectin Triticum vulgaris agglutinin (WGA) to neutrophils and, in contrast to native rhLTF, inhibited respiratory burst of neutrophils induced by N-formyl-L-methionyl-L-leucyl-L-phenylalanine and by two plant lectins (WGA and PHA-L). However, we observed no differences between the effects of rhLTF, rhLTF-Cl, and rhLTF-Br on respiratory burst of neutrophils induced by phorbol 12-myristate 13-acetate (PMA), digitonin, and number of plant lectins with different glycan-binding specificity. Furthermore, all rhLTF forms interfered with PMA- and ionomycin-induced formation of neutrophil extracellular traps. Thus, halogenative modification of LTF is one of the mechanisms involved in modulating a variety of signaling pathways in neutrophils to control their pro-inflammatory activity.


Subject(s)
Bromates/chemistry , Hypochlorous Acid/chemistry , Lactoferrin/genetics , Neutrophils/metabolism , Acetylglucosamine/metabolism , Actin Cytoskeleton/metabolism , Calcium/metabolism , Digitonin/pharmacology , Humans , Ionomycin/pharmacology , Lactoferrin/chemistry , Lactoferrin/metabolism , Recombinant Proteins/chemistry , Recombinant Proteins/metabolism , Tetradecanoylphorbol Acetate/pharmacology , Triticum/chemistry , Wheat Germ Agglutinins/chemistry
3.
Int J Biol Macromol ; 191: 811-820, 2021 Nov 30.
Article in English | MEDLINE | ID: mdl-34592222

ABSTRACT

The formation of complexes may be used for the development of delivery systems in foods field. The aim of this study was to explore the interaction mechanism between Lentinus edodes mycelia polysaccharide (LMP) and bovine lactoferrin (BLF), and the activity of LMP-BLF complex to inhibit oxidative stress in islet ß cells. The interaction mechanisms of LMP with BLF were investigated with multi-spectroscopic techniques. The multi-spectroscopic analysis result showed that LMP bound with BLF by van der Waals force and hydrogen bond. The quenching mechanism of BLF with LMP was static quenching. Cell viability, reactive oxygen species (ROS) level, apoptosis and the related signaling pathways were detected with thiazolyl blue tetrazolium bromide (MTT) assay, 2,7-Dichlorofluorescin diacetate (DCFH-DA) staining, Hoechst 33258 staining and Western blot methods respectively. The complex alleviated apoptosis induced by hydrogen peroxide (H2O2), and inhibited oxidative stress via MAPK pathways in MIN6 cells. In addition, the complex was able to promote glucose uptake in HepG2 cells. These results will broaden our understanding of LMP-BLF complexes and the applications of polysaccharide-protein complexes in the foods field.


Subject(s)
Antioxidants/pharmacology , Fungal Polysaccharides/pharmacology , Insulin-Secreting Cells/drug effects , Lactoferrin/pharmacology , Shiitake Mushrooms/chemistry , Animals , Antioxidants/chemistry , Apoptosis , Cattle , Fungal Polysaccharides/chemistry , Glucose/metabolism , Hep G2 Cells , Humans , Hydrogen Bonding , Insulin Resistance , Insulin-Secreting Cells/metabolism , Lactoferrin/chemistry , MAP Kinase Signaling System , Protein Binding
4.
Materials (Basel) ; 14(7)2021 Mar 25.
Article in English | MEDLINE | ID: mdl-33805987

ABSTRACT

As shown recently, oleic acid (OA) in complex with lactoferrin (LF) causes the death of cancer cells, but no mechanism(s) of that toxicity have been disclosed. In this study, constitutive parameters of the antitumor effect of LF/OA complex were explored. Complex LF/OA was prepared by titrating recombinant human LF with OA. Spectral analysis was used to assess possible structural changes of LF within its complex with OA. Structural features of apo-LF did not change within the complex LF:OA = 1:8, which was toxic for hepatoma 22a cells. Cytotoxicity of the complex LF:OA = 1:8 was tested in cultured hepatoma 22a cells and in fresh erythrocytes. Its anticancer activity was tested in mice carrying hepatoma 22a. In mice injected daily with LF-8OA, the same tumor grew significantly slower. In 20% of animals, the tumors completely resolved. LF alone was less efficient, i.e., the tumor growth index was 0.14 for LF-8OA and 0.63 for LF as compared with 1.0 in the control animals. The results of testing from 48 days after the tumor inoculation showed that the survival rate among LF-8OA-treated animals was 70%, contrary to 0% rate in the control group and among the LF-treated mice. Our data allow us to regard the complex of LF and OA as a promising tool for cancer treatment.

5.
J Pineal Res ; 68(2): e12626, 2020 Mar.
Article in English | MEDLINE | ID: mdl-31770455

ABSTRACT

Tryptophan hydroxylase (TPH) activity was detected in cultured epidermal melanocytes and dermal fibroblasts with respective Km of 5.08 and 2.83 mM and Vmax of 80.5 and 108.0 µmol/min. Low but detectable TPH activity was also seen in cultured epidermal keratinocytes. Serotonin and/or its metabolite and precursor to melatonin, N-acetylserotonin (NAS), were identified by LC/MS in human epidermis and serum. Endogenous epidermal levels were 113.18 ± 13.34 and 43.41 ± 12.45 ng/mg protein for serotonin (n = 8/8) and NAS (n = 10/13), respectively. Their production was independent of race, gender, and age. NAS was also detected in human serum (n = 13/13) at a concentration 2.44 ± 0.45 ng/mL, while corresponding serotonin levels were 295.33 ± 17.17 ng/mL (n = 13/13). While there were no differences in serum serotonin levels, serum NAS levels were slightly higher in females. Immunocytochemistry studies showed localization of serotonin to epidermal and follicular keratinocytes, eccrine glands, mast cells, and dermal fibrocytes. Endogenous production of serotonin in cultured melanocytes, keratinocytes, and dermal fibroblasts was modulated by UVB. In conclusion, serotonin and NAS are produced endogenously in the epidermal, dermal, and adnexal compartments of human skin and in cultured skin cells. NAS is also detectable in human serum. Both serotonin and NAS inhibited melanogenesis in human melanotic melanoma at concentrations of 10-4 -10-3  M. They also inhibited growth of melanocytes. Melanoma cells were resistant to NAS inhibition, while serotonin inhibited cell growth only at 10-3  M. In summary, we characterized a serotonin-NAS system in human skin that is a part of local neuroendocrine system regulating skin homeostasis.


Subject(s)
Epidermis/metabolism , Fibroblasts/metabolism , Keratinocytes/metabolism , Melatonin/metabolism , Serotonin/analogs & derivatives , Skin Aging , Adult , Aged , Aged, 80 and over , Cell Line, Tumor , Female , Humans , Male , Middle Aged , Serotonin/metabolism
6.
Arch Biochem Biophys ; 675: 108122, 2019 10 30.
Article in English | MEDLINE | ID: mdl-31580874

ABSTRACT

Lactoferrin is a non-heme iron-binding glycoprotein with multiple health-beneficial functions including antimicrobial, antioxidant, anticarcinogenic, and immunomodulatory effects. There is emerging evidence that neutrophils may serve as targets of lactoferrin in vivo, and here we show how recombinant human lactoferrin (rhLf) can contribute to this regulation. Indeed, our results demonstrate that rhLf binds efficiently to human neutrophils and induces a variety of early cellular responses such as mobilization of intracellular Ca2+, remodeling of actin cytoskeleton, and degranulation (release of lysozyme and myeloperoxidase). In addition, rhLf facilitates lectin-induced H2O2 production and stabilization of lectin-induced cellular aggregates. The role of calcium signaling seems to be essential for rhLf-induced activation of neutrophils, as Ca2+-chelators inhibit degranulation response while lectin-induced H2O2 production correlates significantly with cytoplasmic Ca2+ elevation. Taken together, our findings justify that rhLf can activate neutrophil functions in a calcium-dependent manner and hence, can potentiate innate immune responses.


Subject(s)
Calcium Signaling , Lactoferrin/metabolism , Neutrophils/metabolism , Calcium/metabolism , Cell Degranulation , Humans , Hydrogen Peroxide/metabolism , Protein Binding , Recombinant Proteins/metabolism
7.
Biosensors (Basel) ; 9(1)2019 Feb 28.
Article in English | MEDLINE | ID: mdl-30823455

ABSTRACT

We registered surface enhanced Raman scattering (SERS) spectra of the human lactoferrin molecules adsorbed on a silvered porous silicon (por-Si) from 10-6⁻10-18 M solutions. It was found that the por-Si template causes a negative surface potential of silver particles and their chemical resistivity to oxidation. These properties provided to attract positively charged lactoferrin molecules and prevent their interaction with metallic particles upon 473 nm laser excitation. The SERS spectra of lactoferrin adsorbed from 10-6 M solution were rather weak but a decrease of the concentration to 10-10 M led to an enormous growth of the SERS signal. This effect took place as oligomers of lactoferrin were broken down to monomeric units while its concentration was reduced. Oligomers are too large for a uniform overlap with electromagnetic field from silver particles. They cannot provide an intensive SERS signal from the top part of the molecules in contrast to monomers that can be completely covered by the electromagnetic field. The SERS spectra of lactoferrin at the 10-14 and 10-16 M concentrations were less intensive and started to change due to increasing contribution from the laser burned molecules. To prevent overheating the analyte molecules on the silvered por-Si were protected with graphene, which allowed the detection of lactoferrin adsorbed from the 10-18 M solution.


Subject(s)
Biosensing Techniques , Graphite/chemistry , Lactoferrin/isolation & purification , Spectrum Analysis, Raman/methods , Humans , Lactoferrin/chemistry , Porosity , Silicon/chemistry , Silver/chemistry , Surface Properties
8.
Cell Mol Life Sci ; 74(21): 3913-3925, 2017 11.
Article in English | MEDLINE | ID: mdl-28803347

ABSTRACT

The skin being a protective barrier between external and internal (body) environments has the sensory and adaptive capacity to maintain local and global body homeostasis in response to noxious factors. An important part of the skin response to stress is its ability for melatonin synthesis and subsequent metabolism through the indolic and kynuric pathways. Indeed, melatonin and its metabolites have emerged as indispensable for physiological skin functions and for effective protection of a cutaneous homeostasis from hostile environmental factors. Moreover, they attenuate the pathological processes including carcinogenesis and other hyperproliferative/inflammatory conditions. Interestingly, mitochondria appear to be a central hub of melatonin metabolism in the skin cells. Furthermore, substantial evidence has accumulated on the protective role of the melatonin against ultraviolet radiation and the attendant mitochondrial dysfunction. Melatonin and its metabolites appear to have a modulatory impact on mitochondrion redox and bioenergetic homeostasis, as well as the anti-apoptotic effects. Of note, some metabolites exhibit even greater impact than melatonin alone. Herein, we emphasize that melatonin-mitochondria axis would control integumental functions designed to protect local and perhaps global homeostasis. Given the phylogenetic origin and primordial actions of melatonin, we propose that the melatonin-related mitochondrial functions represent an evolutionary conserved mechanism involved in cellular adaptive response to skin injury and repair.


Subject(s)
Antioxidants/pharmacology , Melatonin/pharmacology , Mitochondria/metabolism , Skin/metabolism , Animals , Humans , Mitochondria/drug effects , Skin/drug effects , Skin Physiological Phenomena
9.
Exp Dermatol ; 26(7): 563-568, 2017 07.
Article in English | MEDLINE | ID: mdl-27619234

ABSTRACT

Melatonin is produced in almost all living taxa and is probably 2-3 billion years old. Its pleiotropic activities are related to its local concentration that is secondary to its local synthesis, delivery from distant sites and metabolic or non-enzymatic consumption. This consumption generates metabolites through indolic, kynuric and cytochrome P450 (CYP) mediated hydroxylations and O-demethylation or non-enzymatic processes, with potentially diverse phenotypic effects. While melatonin acts through receptor-dependent and receptor-independent mechanisms, receptors for melatonin metabolites remain to be identified, while their receptor-independent activities are well documented. The human skin with its main cellular components including malignant cells can both produce and rapidly metabolize melatonin in cell-type and context-dependent fashion. The predominant metabolism in human skin occurs through indolic, CYP-mediated and kynuric pathways with main metabolites represented by 6-hydroxymelatonin, N1 -acetyl-N2 -formyl-5-methoxykynuramine (AFMK), N1 -acetyl-5-methoxykynuramine (AMK), 5-methoxytryptamine, 5-methoxytryptophol and 2-hydroxymelatonin. AFMK, 6-hydroxymelatonin, 2-hydroxymelatonin and probably 4-hydroxymelatonin can potentially be produced in epidermis through UVB-induced non-enzymatic melatonin transformation. The skin metabolites are also the same as those produced in lower organisms and plants indicating phylogenetic conservation across diverse species and adaptation by skin of the primordial defense mechanism. As melatonin and its metabolites counteract or buffer environmental stresses to maintain its homeostasis through broad-spectrum activities, both melatoninergic and degradative pathways must be precisely regulated, because the nature of phenotypic regulations will depend on local concentration of melatonin and its metabolites. These can be receptor-mediated or represent non-receptor regulatory mechanisms.


Subject(s)
Cytochrome P-450 Enzyme System/metabolism , Melatonin/metabolism , Skin/metabolism , Ultraviolet Rays , Animals , Catalysis , Cricetinae , Epidermis/metabolism , Female , Homeostasis , Humans , Indoles/chemistry , Keratinocytes/metabolism , Male , Melatonin/analogs & derivatives , Melatonin/chemistry , Methylation , Mutation , Oxidative Stress , Phenotype , Phylogeny , Skin/radiation effects
10.
J Steroid Biochem Mol Biol ; 151: 25-37, 2015 Jul.
Article in English | MEDLINE | ID: mdl-25448732

ABSTRACT

CYP11A1, found only in vertebrates, catalyzes the first step of steroidogenesis where cholesterol is converted to pregnenolone. The purified enzyme, also converts desmosterol and plant sterols including campesterol and ß-sitosterol, to pregnenolone. Studies, initially with purified enzyme, reveal that 7-dehydrocholesterol (7DHC), ergosterol, lumisterol 3, and vitamins D3 and D2 also serve as substrates for CYP11A1, with 7DHC being better and vitamins D3 and D2 being poorer substrates than cholesterol. Adrenal glands, placenta, and epidermal keratinocytes can also carry out these conversions and 7-dehydropregnenolone has been detected in the epidermis, adrenal glands, and serum, and 20-hydroxyvitamin D3 was detected in human serum and the epidermis. Thus, this metabolism does appear to occur in vivo, although its quantitative importance and physiological role remain to be established. CYP11A1 action on 7DHC in vivo is further supported by detection of Δ(7)steroids in Smith-Lemli-Opitz syndrome patients. The activity of CYP11A1 is affected by the structure of the substrate with sterols having steroidal or Δ(7)-steroidal structures undergoing side chain cleavage following hydroxylations at C22 and C20. In contrast, metabolism of vitamin D involves sequential hydroxylations that start at C20 but do not lead to cleavage. Molecular modeling using the crystal structure of CYP11A1 predicts that other intermediates of cholesterol synthesis could also serve as substrates for CYP11A1. Finally, CYP11A1-derived secosteroidal hydroxy-derivatives and Δ(7)steroids are biologically active when administered in vitro in a manner dependent on the structure of the compound and the lineage of the target cells, suggesting physiological roles for these metabolites. This article is part of a special issue entitled 'SI: Steroid/Sterol signaling'.


Subject(s)
Cholesterol Side-Chain Cleavage Enzyme/metabolism , Animals , Cholecalciferol/metabolism , Dehydrocholesterols/metabolism , Ergocalciferols/metabolism , Humans , Sterols/metabolism
11.
Int J Mol Sci ; 15(10): 17705-32, 2014 Sep 30.
Article in English | MEDLINE | ID: mdl-25272227

ABSTRACT

The human skin is not only a target for the protective actions of melatonin, but also a site of melatonin synthesis and metabolism, suggesting an important role for a local melatoninergic system in protection against ultraviolet radiation (UVR) induced damages. While melatonin exerts many effects on cell physiology and tissue homeostasis via membrane bound melatonin receptors, the strong protective effects of melatonin against the UVR-induced skin damage including DNA repair/protection seen at its high (pharmocological) concentrations indicate that these are mainly mediated through receptor-independent mechanisms or perhaps through activation of putative melatonin nuclear receptors. The destructive effects of the UVR are significantly counteracted or modulated by melatonin in the context of a complex intracutaneous melatoninergic anti-oxidative system with UVR-enhanced or UVR-independent melatonin metabolites. Therefore, endogenous intracutaneous melatonin production, together with topically-applied exogenous melatonin or metabolites would be expected to represent one of the most potent anti-oxidative defense systems against the UV-induced damage to the skin. In summary, we propose that melatonin can be exploited therapeutically as a protective agent or as a survival factor with anti-genotoxic properties or as a "guardian" of the genome and cellular integrity with clinical applications in UVR-induced pathology that includes carcinogenesis and skin aging.


Subject(s)
Melatonin/metabolism , Skin/metabolism , Humans , Keratinocytes/cytology , Keratinocytes/drug effects , Keratinocytes/metabolism , Membrane Potential, Mitochondrial/radiation effects , Oxidative Stress/radiation effects , Receptors, Melatonin/metabolism , Skin/radiation effects , Ultraviolet Rays
12.
Mol Cell Endocrinol ; 383(1-2): 181-92, 2014 Mar 05.
Article in English | MEDLINE | ID: mdl-24382416

ABSTRACT

We investigated the metabolism of vitamin D2 to hydroxyvitamin D2 metabolites ((OH)D2) by human placentas ex-utero, adrenal glands ex-vivo and cultured human epidermal keratinocytes and colonic Caco-2 cells, and identified 20(OH)D2, 17,20(OH)2D2, 1,20(OH)2D2, 25(OH)D2 and 1,25(OH)2D2 as products. Inhibition of product formation by 22R-hydroxycholesterol indicated involvement of CYP11A1 in 20- and 17-hydroxylation of vitamin D2, while use of ketoconazole indicated involvement of CYP27B1 in 1α-hydroxylation of products. Studies with purified human CYP11A1 confirmed the ability of this enzyme to convert vitamin D2 to 20(OH)D2 and 17,20(OH)2D2. In placentas and Caco-2 cells, production of 20(OH)D2 was higher than 25(OH)D2 while in human keratinocytes the production of 20(OH)D2 and 25(OH)D2 were comparable. HaCaT keratinocytes showed high accumulation of 1,20(OH)2D2 relative to 20(OH)D2 indicating substantial CYP27B1 activity. This is the first in vivo evidence for a novel pathway of vitamin D2 metabolism initiated by CYP11A1 and modified by CYP27B1, with the product profile showing tissue- and cell-type specificity.


Subject(s)
Adrenal Glands/metabolism , Epidermis/metabolism , Ergocalciferols/metabolism , Keratinocytes/metabolism , Placenta/metabolism , 25-Hydroxyvitamin D3 1-alpha-Hydroxylase/genetics , 25-Hydroxyvitamin D3 1-alpha-Hydroxylase/metabolism , Adrenal Glands/cytology , Adrenal Glands/drug effects , Animals , Caco-2 Cells , Cholesterol Side-Chain Cleavage Enzyme/genetics , Cholesterol Side-Chain Cleavage Enzyme/metabolism , Epidermal Cells , Epidermis/drug effects , Female , Gene Expression Regulation , Humans , Hydroxycholesterols/pharmacology , Hydroxylation , Keratinocytes/cytology , Keratinocytes/drug effects , Ketoconazole/pharmacology , Mitochondria/drug effects , Mitochondria/metabolism , Organ Specificity , Placenta/cytology , Placenta/drug effects , Pregnancy , Rats , Rats, Wistar , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Signal Transduction , Tissue Culture Techniques
13.
Anticancer Agents Med Chem ; 14(1): 77-96, 2014 Jan.
Article in English | MEDLINE | ID: mdl-23869782

ABSTRACT

Skin is the largest body organ forming a metabolically active barrier between external and internal environments. The metabolic barrier is composed of cytochromes P450 (CYPs) that regulate its homeostasis through activation or inactivation of biologically relevant molecules. In this review we focus our attention on local steroidogenic and secosteroidogenic systems in relation to skin cancer, e.g., prevention, attenuation of tumor progression and therapy. The local steroidogenic system is composed of locally expressed CYPs involved in local production of androgens, estrogens, gluco- and mineralo-corticosteroids from cholesterol (initiated by CYP11A1) or from steroid precursors delivered to the skin, and of their metabolism and/or inactivation. Cutaneous 7-hydroxylases (CYP7A1, CYP7B1 and CYP39) potentially can produce 7-hydroxy/oxy-steroids/sterols with modifying effects on local tumorigenesis. CYP11A1 also transforms 7-dehydrocholesterol (7DHC)→22(OH)7DHC→20,22(OH)2-7DHC→7-dehydropregnenolone, which can be further metabolized to other 5,7- steroidal dienes. These 5,7-dienal intermediates are converted by ultraviolet radiation B (UVB) into secosteroids which show pro-differentiation and anti-cancer properties. Finally, the skin is the site of activation of vitamin D3 through two alternative pathways. The classical one involves sequential hydroxylation at positions 25 and 1 to produce active 1,25(OH)2D3, which is further inactivated through hydroxylation at C24. The novel pathway is initiated by CYP11A1 with predominant production of 20(OH)D3 which is further metabolized to biologically active but non-calcemic D3-hydroxyderivatives. Classical and non-classical (novel) vitamin D analogs show pro-differentiation, anti-proliferative and anticancer properties. In addition, melatonin is metabolized by local CYPs. In conclusion cutaneously expressed CYPs have significant effects on skin physiology and pathology trough regulation of its chemical milieu.


Subject(s)
Carcinogens, Environmental/metabolism , Cytochrome P-450 Enzyme System/metabolism , Endocrine System/metabolism , Environmental Exposure , Skin Neoplasms/metabolism , Carcinogenesis/metabolism , Carcinogens, Environmental/toxicity , Cholecalciferol/metabolism , Humans , Oxidative Stress , Skin/metabolism , Skin Neoplasms/prevention & control , Skin Neoplasms/therapy , Steroids/biosynthesis , Ultraviolet Rays/adverse effects
14.
Dermatoendocrinol ; 5(1): 7-19, 2013 Jan 01.
Article in English | MEDLINE | ID: mdl-24494038

ABSTRACT

Novel metabolic pathways initiated by the enzymatic action of CYP11A1 on 7DHC (7-dehydrocholesterol), ergosterol, vitamins D3 and D2 were characterized with help of chemical synthesis, UV and mass spectrometry and NMR analyses. The first pathway follows the sequence 7DHC→22(OH)7DHC → 20,22(OH)27DHC → 7DHP (7-dehydropregnenolone), which can further be metabolized by steroidogenic enzymes. The resulting 5,7-dienes can be transformed by UVB to corresponding, biologically active, secosteroids. Action of CYP11A1 on vitamin D3 and D2 produces novel hydroxyderivatives with OH added at positions C17, C20, C22, C23 and C24, some of which can be hydroxylated by CYP27B1 and/or by CYP27A1 and/ or by CYP24A1.The main products of these pathways are biologically active with a potency related to their chemical structure and the target cell type. Main products of CYP11A1-mediated metabolism on vitamin D are non-calcemic and non-toxic at relatively high doses and serve as partial agonists on the vitamin D receptor. New secosteroids are excellent candidates for therapy of fibrosing, inflammatory or hyperproliferative disorders including cancers and psoriasis.

15.
FASEB J ; 26(9): 3901-15, 2012 Sep.
Article in English | MEDLINE | ID: mdl-22683847

ABSTRACT

We define previously unrecognized in vivo pathways of vitamin D(3) (D3) metabolism generating novel D3-hydroxyderivatives different from 25-hydroxyvitamin D(3) [25(OH)D3] and 1,25(OH)(2)D3. Their novel products include 20-hydroxyvitamin D(3) [20(OH)D3], 22(OH)D3, 20,23(OH)(2)D3, 20,22(OH)(2)D3, 1,20(OH)(2)D3, 1,20,23(OH)(3)D3, and 17,20,23(OH)(3)D3 and were produced by placenta, adrenal glands, and epidermal keratinocytes. We detected the predominant metabolite [20(OH)D3] in human serum with a relative concentration ∼20 times lower than 25(OH)D3. Use of inhibitors and studies performed with isolated mitochondria and purified enzymes demonstrated involvement of the steroidogenic enzyme cytochrome P450scc (CYP11A1) as well as CYP27B1 (1α-hydroxylase). In placenta and adrenal glands with high CYP11A1 expression, the predominant pathway was D3 → 20(OH)D3 → 20,23(OH)(2)D3 → 17,20,23(OH)(3)D3 with further 1α-hydroxylation, and minor pathways were D3 → 25(OH)D3 → 1,25(OH)(2)D3 and D3 → 22(OH)D3 → 20,22(OH)(2)D3. In epidermal keratinocytes, we observed higher proportions of 22(OH)D3 and 20,22(OH)(2)D3. We also detected endogenous production of 20(OH)D3, 22(OH) D3, 20,23(OH)(2)D3, 20,22(OH)(2)D3, and 17,20,23(OH)(3)D3 by immortalized human keratinocytes. Thus, we provide in vivo evidence for novel pathways of D3 metabolism initiated by CYP11A1, with the product profile showing organ/cell type specificity and being modified by CYP27B1 activity. These findings define the pathway intermediates as natural products/endogenous bioregulators and break the current dogma that vitamin D is solely activated through the sequence D3 → 25(OH)D3 → 1,25(OH)(2)D3.


Subject(s)
25-Hydroxyvitamin D3 1-alpha-Hydroxylase/metabolism , Cholecalciferol/metabolism , Cholesterol Side-Chain Cleavage Enzyme/metabolism , Animals , Cells, Cultured , Chromatography, High Pressure Liquid , Female , Humans , Keratinocytes/enzymology , Keratinocytes/metabolism , Polymerase Chain Reaction , Rats , Rats, Wistar , Tandem Mass Spectrometry
16.
PLoS One ; 4(2): e4309, 2009.
Article in English | MEDLINE | ID: mdl-19190754

ABSTRACT

Since P450scc transforms 7-dehydrocholesterol (7DHC) to 7-dehydropregnenolone (7DHP) in vitro, we investigated sequential 7DHC metabolism by adrenal glands ex vivo. There was a rapid, time- and dose-dependent metabolism of 7DHC by adrenals from rats, pigs, rabbits and dogs with production of more polar 5,7-dienes as detected by RP-HPLC. Based on retention time (RT), UV spectra and mass spectrometry, we identified the major products common to all tested species as 7DHP, 22-hydroxy-7DHC and 20,22-dihydroxy-7DHC. The involvement of P450scc in adrenal metabolic transformation was confirmed by the inhibition of this process by DL-aminoglutethimide. The metabolism of 7DHC with subsequent production of 7DHP was stimulated by forscolin indicating involvement of cAMP dependent pathways. Additional minor products of 7DHC metabolism that were more polar than 7DHP were identified as 17-hydroxy-7DHP (in pig adrenals but not those of rats) and as pregna-4,7-diene-3,20-dione (7-dehydroprogesterone). Both products represented the major identifiable products of 7DHP metabolism in adrenal glands. Studies with purified enzymes show that StAR protein likely transports 7DHC to the inner mitochondrial membrane, that 7DHC can compete effectively with cholesterol for the substrate binding site on P450scc and that the catalytic efficiency of 3betaHSD for 7DHP (V(m)/K(m)) is 40% of that for pregnenolone. Skin mitochondria are capable of transforming 7DHC to 7DHP and the 7DHP is metabolized further by skin extracts. Finally, 7DHP, its photoderivative 20-oxopregnacalciferol, and pregnenolone exhibited biological activity in skin cells including inhibition of proliferation of epidermal keratinocytes and melanocytes, and melanoma cells. These findings define a novel steroidogenic pathway: 7DHC-->22(OH)7DHC-->20,22(OH)(2)7DHC-->7DHP, with potential further metabolism of 7DHP mediated by 3betaHSD or CYP17, depending on mammalian species. The 5-7 dienal intermediates of the pathway can be a source of biologically active vitamin D3 derivatives after delivery to or production in the skin, an organ intermittently exposed to solar radiation.


Subject(s)
Adrenal Glands/metabolism , Alkenes/metabolism , Dehydrocholesterols/metabolism , Skin/metabolism , Alkenes/chemistry , Animals , Cell Proliferation , Chromatography, Liquid , Dehydrocholesterols/chemistry , Enzyme Inhibitors , Enzymes/metabolism , Female , Humans , Keratinocytes/metabolism , Male , Mass Spectrometry , Melanocytes/metabolism , Melanoma/metabolism , Melanoma/pathology , Metabolic Networks and Pathways , Pregnatrienes/chemistry , Pregnatrienes/metabolism , Secosteroids/chemistry , Secosteroids/metabolism , Skin/cytology , Time Factors , Tissue Extracts/metabolism
17.
J Pineal Res ; 45(4): 515-23, 2008 Nov.
Article in English | MEDLINE | ID: mdl-18717775

ABSTRACT

In the present study we provide direct evidence for the involvement of rat microsomal cytochrome P450s in melatonin O-demethylation and hydroxylation at two different positions: 2 and 6, as well as generation of N(1)-acetyl-N(2)-formyl-5-methoxy-kynuramine (AFMK) and two unknown products. Moreover, we found that mitochondrial cytochrome P450s also converts melatonin into AFMK, N-acetylserotonin, 2-hydroxymelatonin, 6-hydroxymelatonin and the same two unknown products. Eadie-Hofstee plots for 6-hydroxylation and O-demethylation reactions were curvilinear for all tested fractions, suggestive of involvement of at least two components, one with a high affinity and low capacity, and another with a low affinity and high capacity. Mitochondrial cytochrome P450s exhibited higher affinity (suggesting lower K(m) value) and higher V(max) for melatonin 6-hydroxylation and O-demethylation for both high-affinity and low-affinity components as compared with microsomal enzymes. The intrinsic clearance for melatonin hydroxylation by high- and low-affinity components displayed the highest values in all tested fractions, indicating that both mitochondrial and microsomal cytochrome P450s metabolize melatonin principally by 6-hydroxylation, with O-demethylation representing a minor metabolic pathway.


Subject(s)
Cytochrome P-450 Enzyme System/metabolism , Melatonin/metabolism , Microsomes, Liver/metabolism , Mitochondria, Liver/metabolism , Animals , Chromatography, High Pressure Liquid , Cytochrome P-450 Enzyme Inhibitors , Kinetics , Kynuramine/analogs & derivatives , Kynuramine/metabolism , Liver , Male , Melatonin/analogs & derivatives , Rats , Rats, Wistar , Serotonin/analogs & derivatives , Serotonin/metabolism , Spectrometry, Mass, Electrospray Ionization
18.
FEBS J ; 273(13): 2891-901, 2006 Jul.
Article in English | MEDLINE | ID: mdl-16817851

ABSTRACT

We report an alternative, hydroxylating pathway for the metabolism of vitamin D2 in a cytochrome P450 side chain cleavage (P450scc; CYP11A1) reconstituted system. NMR analyses identified solely 20-hydroxyvitamin D2 and 17,20-dihydroxyvitamin D2 derivatives. 20-Hydroxyvitamin D2 was produced at a rate of 0.34 mol x min(-1) x mol(-1) P450scc, and 17,20-dihydroxyvitamin D2 was produced at a rate of 0.13 mol x min(-1) x mol(-1). In adrenal mitochondria, vitamin D2 was metabolized to six monohydroxy products. Nevertheless, aminoglutethimide (a P450scc inhibitor) inhibited this adrenal metabolite formation. Initial testing of metabolites for biological activity showed that, similar to vitamin D2, 20-hydroxyvitamin D2 and 17,20-dihydroxyvitamin D2 inhibited DNA synthesis in human epidermal HaCaT keratinocytes, although to a greater degree. 17,20-Dihydroxyvitamin D2 stimulated transcriptional activity of the involucrin promoter, again to a significantly greater extent than vitamin D2, while the effect of 20-hydroxyvitamin D2 was statistically insignificant. Thus, P450scc can metabolize vitamin D2 to generate novel products, with intrinsic biological activity (at least in keratinocytes).


Subject(s)
25-Hydroxyvitamin D 2/analogs & derivatives , Cholesterol Side-Chain Cleavage Enzyme/metabolism , Ergocalciferols/metabolism , Hydroxycholecalciferols/chemistry , Magnetic Resonance Spectroscopy/methods , 25-Hydroxyvitamin D 2/chemistry , 25-Hydroxyvitamin D 2/metabolism , Aminoglutethimide/pharmacology , Animals , Cattle , Ergocalciferols/chemistry , Humans , Hydroxycholecalciferols/metabolism , Keratinocytes/metabolism , Male , Promoter Regions, Genetic , Protein Precursors/genetics , Rats , Rats, Wistar
19.
FASEB J ; 20(9): 1564-6, 2006 Jul.
Article in English | MEDLINE | ID: mdl-16793870

ABSTRACT

Melatonin, which can be produced in the skin, exerts a protective effect against damage induced by UV radiation (UVR). We have investigated the effect of UVB, the most damaging component of UVR, on melatonin metabolism in HaCaT keratinocytes and in a cell-free system. Four metabolites were identified by HPLC and LC-MS: 6-hydroxymelatonin, N1-acetyl-N2-formyl-5-methoxykynuramine (AFMK), 2-hydroxymelatonin (the main intermediate between melatonin and AFMK), and 4-hydroxymelatonin. Concentrations of these photoproducts were directly proportional to UVR-dose and to melatonin substrate content, and their accumulation was time-dependent. The UVR-dependent increase of AFMK and 2-hydroxymelatonin was also detected in keratinocytes, where it was accompanied by simultaneous consumption of intracellular melatonin. Of note, melatonin and its two major metabolites, 2-hydroxymelatonin and AFMK, were also detected in untreated keratinocytes, neither irradiated nor preincubated with melatonin. Thus, intracellular melatonin metabolism is enhanced under exposure to UVR. The additional biological activity of these individual melatonin metabolites increases the spectrum of potential actions of the recently identified cutaneous melatoninergic system.


Subject(s)
Keratinocytes/metabolism , Keratinocytes/radiation effects , Melatonin/metabolism , Ultraviolet Rays , Anti-Bacterial Agents/pharmacology , Biological Transport/radiation effects , Cell Line , Cell-Free System , Dose-Response Relationship, Radiation , Humans , Keratinocytes/drug effects , Melatonin/radiation effects
20.
Endocrine ; 27(2): 137-48, 2005 Jul.
Article in English | MEDLINE | ID: mdl-16217127

ABSTRACT

Melatonin has been experimentally implicated in skin functions such as hair growth cycling, fur pigmentation, and melanoma control, and melatonin receptors are expressed in several skin cells including normal and malignant keratinocytes, melanocytes, and fibroblasts. Melatonin is also able to suppress ultraviolet (UV)-induced damage to skin cells and shows strong antioxidant activity in UV exposed cells. Moreover, we recently uncovered expression in the skin of the biochemical machinery involved in the sequential transformation of l-tryptophan to serotonin and melatonin. Existence of the biosynthetic pathway was confirmed by detection of the corresponding genes and proteins with actual demonstration of enzymatic activities for tryptophan hydroxylase, serotonin N-acetyl-transferase, and hydroxyindole-O-methyltransferase in extracts from skin and skin cells. Initial evidence for in vivo synthesis of melatonin and its metabolism was obtained in hamster skin organ culture and in one melanoma line. Therefore, we propose that melatonin (synthesized locally or delivered topically) could counteract or buffer external (environmental) or internal stresses to preserve the biological integrity of the organ and to maintain its home-ostasis. Furthermore, melatonin could have a role in protection against solar radiation or even in the management of skin diseases.


Subject(s)
Melatonin/physiology , Skin Diseases/pathology , Skin Physiological Phenomena/drug effects , Skin/pathology , Amino Acid Sequence , Animals , Humans , Melatonin/biosynthesis , Molecular Sequence Data , Phenotype , Receptors, Melatonin/metabolism , Skin/metabolism , Skin Diseases/metabolism , Skin Neoplasms/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...