Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Transl Med ; 13(625): eabg7565, 2021 12 22.
Article in English | MEDLINE | ID: mdl-34936383

ABSTRACT

Chimeric antigen receptor (CAR) T cells induce durable responses in patients with refractory hematological tumors. However, low CAR T cell activity, poor engraftment, or short in-patient persistence can lead to tumor progression or relapse. Furthermore, excessive CAR T cell expansion and activation can result in life-threatening cytokine release syndrome (CRS). Thus, in-patient control of the CAR T cell population is essential. Interleukin-2 (IL-2) is a critical cytokine for T cell proliferation and effector function, but its clinical use is limited by immune-mediated toxicity. Here, we report on an orthogonal IL-2 receptor and ligand system that enables specific in vivo control of CAR T cell expansion and activation, wherein an orthogonal human IL-2 (STK-009) selectively pairs with an orthogonal human IL-2Rß (hoRb) expressed on CAR T cells. STK-009 expands hoRb-expressing CAR T cells in the presence and absence of tumor antigen and maintains the presence of stem cell memory T cells (TSCM) and effector T cells. In preclinical models of human CAR-refractory lymphoma, STK-009 treatment resulted in systemic and intratumoral expansion and activation of hoRb-expressing anti­CD19-CD28ζ CAR T cells (SYNCAR). The orthogonal IL-2 receptor/ligand system delivers complete responses in large subcutaneous lymphomas, even with substantially reduced CAR T cell doses, by selectively expanding and activating CAR T cells in vivo. STK-009 withdrawal allowed normal CAR T cell contraction, thereby limiting CRS induced by tumor antigen­specific T cell activation. These data suggest that the orthogonal IL-2 receptor/ligand system provides the in vivo control necessary to maximize efficacy of CAR T therapies.


Subject(s)
Interleukin-2 , Lymphoma , Antigens, CD19 , Humans , Immunotherapy, Adoptive , Lymphoma/therapy , Neoplasm Recurrence, Local/therapy , Receptors, Antigen, T-Cell , T-Lymphocytes
2.
Cancer Immunol Res ; 6(10): 1199-1211, 2018 10.
Article in English | MEDLINE | ID: mdl-30154083

ABSTRACT

GITR is a costimulatory receptor currently undergoing phase I clinical trials. Efficacy of anti-GITR therapy in syngeneic mouse models requires regulatory T-cell depletion and CD8+ T-cell costimulation. It is increasingly appreciated that immune cell proliferation and function are dependent on cellular metabolism. Enhancement of diverse metabolic pathways leads to different immune cell fates. Little is known about the metabolic effects of GITR agonism; thus, we investigated whether costimulation via GITR altered CD8+ T-cell metabolism. We found activated, GITR-treated CD8+ T cells upregulated nutrient uptake, lipid stores, glycolysis, and oxygen consumption rate (OCR) in vitro Using MEK, PI3Kδ, and metabolic inhibitors, we show increased metabolism is required, but not sufficient, for GITR antibody (DTA-1)-induced cellular proliferation and IFNγ production. In an in vitro model of PD-L1-induced CD8+ T-cell suppression, GITR agonism alone rescued cellular metabolism and proliferation, but not IFNγ production; however, DTA-1 in combination with anti-PD-1 treatment increased IFNγ production. In the MC38 mouse tumor model, GITR agonism significantly increased OCR and IFNγ and granzyme gene expression in both tumor and draining lymph node (DLN) CD8+ T cells ex vivo, as well as basal glycolysis in DLN and spare glycolytic capacity in tumor CD8+ T cells. DLN in GITR-treated mice showed significant upregulation of proliferative gene expression compared with controls. These data show that GITR agonism increases metabolism to support CD8+ T-cell proliferation and effector function in vivo, and that understanding the mechanism of action of agonistic GITR antibodies is crucial to devising effective combination therapies. Cancer Immunol Res; 6(10); 1199-211. ©2018 AACR.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , Colonic Neoplasms/immunology , Cytokines/immunology , Glucocorticoid-Induced TNFR-Related Protein/agonists , Glucocorticoid-Induced TNFR-Related Protein/immunology , Animals , Antibodies/pharmacology , B7-H1 Antigen/immunology , CD8-Positive T-Lymphocytes/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Disease Models, Animal , Mice, Inbred C57BL
SELECTION OF CITATIONS
SEARCH DETAIL
...